M.Sc., MATHEMATICS

Program Code: PMT

2024 - Onwards

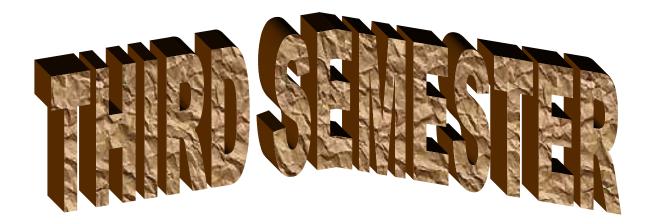
MANNAR THIRUMALAI NAICKER COLLEGE

(AUTONOMOUS)

Re-accredited with "A⁺" Grade by NAAC

PASUMALAI, MADURAI – 625 004

Academic Council Meeting Held On 17.04.2025


MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS), MADURAI – 625 004

M. SC MATHEMATICS CURRICULUM

(For the students admitted from the academic year 2024-2025 onwards)

Course Code	Title of the Course	Hrs	Credits	Maximum Marks		
Course Coue	The of the Course		Creans	Int	Ext	Total
	FIRST SEMESTE	ER				
Part – III	Core courses					
24PMTCC11	Algebraic Structures	6	5	25	75	100
24PMTCC12	Real Analysis - I	6	5	25	75	100
24PMTCC13	Ordinary Differential Equations	6	4	25	75	100
Part – III	Elective courses					
24PMTEC11	Graph Theory and Applications	6	3	25	75	100
24PMTEC12	Fuzzy Sets and Their Applications	6	3	25	75	100
	Total	30	20	125	375	500
	SECOND SEMEST	ER				
Part – III	Core courses					
24PMTCC21	Advanced Algebra	6	5	25	75	100
24PMTCC22	Real Analysis - II	6	5	25	75	100
24PMTCC23	Partial Differential Equations	6	4	25	75	100
Part – III	Elective courses					
24PMTEC21	Numerical Analysis	5	3	25	75	100
24PMTEC22	Resource Management Techniques	5	3	25	75	100
24PMTSP21	Mathematics Using Python	2	2	25	75	100
	Total	30	22	150	450	600

Course Code	Title of the Course	Hrs	Credits	Maximum Marks			
Course Code	The of the Course	nrs	Creans	Int	Ext	Total	
	THIRD SEMES	TER					
Part – III	Core courses						
24PMTCC31	Complex Analysis	6	5	25	75	100	
24PMTCC32	Probability Theory	6	5	25	75	100	
24PMTCC33	Topology	6	5	25	75	100	
Part – III	Elective course						
24PMTEC31	Combinatorial Mathematics	4	3	25	75	100	
Part - IV	Skill Enhancement course						
24PMTSP31	Mathematical Documentation Using Latex	2	2	25	75	100	
Part - IV	Non Major Elective course						
24PMTNM31	Mathematics for Competitive Examinations	6	3	25	75	100	
24PMTIN31	Internship Report	-	2	25	75	100	
	Total	30	25	175	525	700	
	FOURTH SEME	STER					
Part – III	Core courses						
24PMTCC41	Functional Analysis	6	5	25	75	100	
24PMTCC42	Integral Equations	6	5	25	75	100	
24PMTPR41	Project with Viva-Voce	10	7	25	75	100	
Part – III	Elective course						
24PMTEC41	Mathematics for SET/NET & General Studies for UPSC/TNPSC	4	3	25	75	100	
Part – IV	Skill Enhancement course						
24PMTSP41	Numerical Analysis Using Python	4	2	25	75	100	
Part - V	Extension Activities						
24PEXTG41	Extension Activity	-	1	25	75	100	
	Total	30	23	150	450	600	
	Grand Total	120	90	600	1800	2400	

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Complex Analysis							
Course Code	24PMTCC31	L	Р	С				
Category	Core 6 -							
COURSE OBJEC	CTIVES:			1				
•	uchy integral formula, local properties of analytic functions, general f evaluation of definite integral and harmonic functions	form c	of Cauch	ny's				
UNIT – I Cauc	hy's Integral Formula			18				
-	it with respect to a closed curve – The Integral formula – Higher deriv ical Functions:Removable Singularities-Taylors's Theorem – Zeros a ximum Principle.							
UNIT – II The general form of Cauchy's Theorem 1								
	Simple Continuity - Homology - The General statement of Cauchy em - Locally exact differentials- Multiply connected regions - Res							
UNIT - III Evalu	ation of Definite Integrals and Harmonic Functions			18				
Evaluation of definit property - Poisson f	ite integrals - Definition of Harmonic function and basic properties - formula.	Mean	value					
UNIT – IV Harm	nonic Functions and Power Series Expansions			18				
Schwarz theorem -	The reflection principle - Weierstrass theorem – Taylor's Series – La	urent	series					
UNIT - V Partial Fractions and Entire Functions 1								
Partial fractions - Ir Hadamard's Theor	nfinite products – Canonical products – Gamma Function- Jensen's fo em	rmula	. —					
	Total Lecture	Hou	rs	90				

BOOKS FOR STUDY:

	Lars V. Ahlfors, Complex Analysis, (3rd edition) McGraw Hill Co., New York, 1979
	UNIT-I: Chapter 4: Section 2: 2.1 to 2.3
	Chapter 4 : Section 3 : 3.1 to 3.4
	UNIT-II: Chapter 4 : Section 4 : 4.1 to 4.7
	UNIT-III: Chapter 4 : Section 5: 5.1 and 5.2 Chapter 4 : Section 5 : 5.3
	UNIT-IV : Chapter 4 : Sections 6 : 6.1 to 6.3
	Chapter 4 : Sections 6.4 and 6.5
	Chapter 5 : Sections 1.1 to 1.3
	UNIT-V: Chapter 5 : Sections 2.1 to 2.4
	Chapter 5 : Sections 3.1 and 3.2
BOOK	S FOR REFERENCES:
>	H.A. Presfly, <i>Introduction to complex Analysis</i>, Clarendon Press, oxford, 1990.J.B. Conway, <i>Functions of one complex variables</i> Springer - Verlag, International student Edition, Naroser Publishing Co.1978
	E. Hille, Analytic function Thorey (2 vols.), Gonm& Co, 1959.
>	M.Heins, Complex function Theory, Academic Press, New York, 1968
WEB I	RESOURCES:
	http://ocw.mit.edu/ocwweb/Mathematics,
	http://mathforum.org,
	http://www.opensource.org,
*	http://en.wikipedia.org

Nature of Course	EMPLOYABILITY		~	SKILL OR	SKILL ORIENTED		ENTREPRENEURSHIP		>	
Curriculum Relevance	LOCAL REC		IONAL	NATIONA		AL	~	GLOBAL		
Changes Made in the Course	Percentage of Change			20	No Chan	iges Made			New Course	
* Treat	* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.									

COURS	SE OUTC	OMES:							K	LEVEL
After st	udying this	s course, tl	he studer	nts will be a	ble to:					
CO1	Analyze a	nd evaluate	e local pr	operties of a	nalytical fu	unctions a	nd definite	integrals.	K	1 to K5
CO2	Describe t	he concept	of defini	te integral a	nd harmon	ic function	ns.		K	1 to K5
CO3	Demonstra	ate the con	cept of th	e general fo	rm of Cau	chy's theor	rem		K	1 to K5
CO4	Develop Taylor and Laurent series								K	1 to K5
CO5	Explain th	e infinite p	oroducts,	canonical pr	oducts and	l jensen's t	formula .		K	1 to K5
MAPPI	NG WITH	I PROGR	AM OU	TCOMES	:					
CO/PC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	1	3	2	3	3				
CO2	2	1	3	1	3	3				
CO 3	3	2	3	1	3	3				
CO4	1	2	3	2	3	3				
CO5	3	1	2	3	3	3				
S- STR	ONG			M – M	EDIUM			L - L(WC	
CO / F	O MAPPI	ING:								
С	os	PSO1	L	PSO2	PS	03	PSO4	4 PS)5
C	01	3		2	1	<u> </u>				
C	02	3		2	1	L				
C	03	3		2	1	1				
C	04	3		2	1	1				
C	05	3		2	1	-				
WEIG	HTAGE	15		10	5	5				
PERCIOF CONTR	HTED ENTAGE OURSE RIBUTIO D POS	3		2	1	L				
LESSO	N PLAN:									
UNIT			Con	nplex Ana	lysis			HRS	PED	AGOGY
I	The Index of a point with respect to a closed curve – The Integral formula – Higher derivatives. Local Properties of analytical Functions: Removable Singularities-Taylors's Theorem – Zeros and poles – The local Mapping – The Maximum Principle.									
п	Chains and cycles- Simple Continuity - Homology - The General statement of Cauchy's Theorem - Proof of Cauchy's theorem - Locally exact differentials- Multiply connected regions - Residue theorem - The argument principle.									

III	Evaluation of definite integrals - Definition of Harmonic function and basic properties - Mean value property - Poisson formula.	18	Chalk & Talk, PPT
IV	Schwarz theorem - The reflection principle - Weierstrass theorem - Taylor's Series - Laurent series .	18	Chalk & Talk
v	Partial fractions - Infinite products – Canonical products – Gamma Function- Jensen's formula – Hadamard's Theorem	18	Seminar

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
Internal Cos		K Level	Sectio MC(n A	Section B Either or	Section C Either or Choice			
Internar Cos	K Level	No. of. Questions	K - Level	Choice					
CI	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)			
AI	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)			
CI	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)			
AII	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)			
	L	No. of Questions to be asked	4		4	4			
Quest Patte		No. of Questions to be answered	4		2	2			
CIA I		Marks for each question	1		5	8			
		Total Marks for each section	4		10	16			

		D	istribution of	f Marks with	K Level	CIA I & CIA II		
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %	
	K1	2			2	3.6	25	
	K2	2	10		12	21.4	25	
	K3		10	16	26	46.4	46.4	
CIA	K4			16	16	28.6	28.6	
I	K5							
	Marks	4	20	32	56	100	100	
	K1	2			2	3.6	7.2	
	K2	2			2	3.6	7.2	
CIA	K3		10	16	26	46.4	46.4	
I	K4		10	16	26	46.4	46.4	
	K5							
	Marks	4	20	32	56	100	100	

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	lue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)			
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or			
S. No	lo Cos 1	K - Level	No. of	K – Level	Choice) With	Choice) With			
			Questions	II Lever	K - LEVEL	K - LEVEL			
1	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)			
2	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)			
3	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)			
4	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)			
5	CO5	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)			
No. of Qu	iestions to	be Asked	10		10	10			
No. of	No. of Questions to be answered		10		10	5			
Marks	Marks for each question		1		1	8			
Total Ma	rks for ea	ich section	10	10		40			
	(Figures in parenthesis denotes, questions should be asked with the given K level)								

Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5			5	3.6	4			
K2	5	20		25	17.8	18			
K3		30	32	62	44.3	44			
K4			48	48	34.3	34			
Marks	10	50	80	140	100	100			

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	CO	K-level		
Answer AL	L the question	ns	P	ART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
I				c)	d)

Answer	• ALL the que	estions		PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
				OR	
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
				OR	
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
				OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
	· · ·			OR	
15. b)	Unit - V	CO5	K3		

Answer .	ALL the quest	ions		PART – C	$(5 \times 8 = 40 \text{ Marks})$
16. a)	Unit - I	CO1	K3		
				OR	
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
				OR	
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
				OR	
20. b)	Unit - V	CO5	K4		

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Probability Theory							
Course Code	24PMTCC32	L	Р	С				
Category	Core	6	-	5				
COURSE OBJEC	TIVES:							

To introduce axiomatic approach to probability theory, to study some statistical characteristics, discrete and continuous distribution functions and their properties, characteristic function and basic limit theorems of probability.

UNIT – I Random Events and Random Variables

Random events – Probability axioms – Combinatorial formulae – conditional probability – Bayes Theorem – Independent events – Random Variables – Distribution Function – Joint Distribution – Marginal Distribution – Conditional Distribution – Independent random variables – Functions of random variables.

UNIT – II Parameters of the Distribution

Expectation- Moments – The Chebyshev Inequality – Absolute moments – Order parameters – Moments of random vectors – Regression of the first and second types.

UNIT - III Characteristic functions

Properties of characteristic functions – Characteristic functions and moments – semi invariants – characteristic function of the sum of the independent random variables – Determination of distribution function by the Characteristic function – Characteristic function of multidimensional random vectors – Probability generating functions.

UNIT - IV Some Probability distributions

One point, two point, Binomial – Polya – Hypergeometric – Poisson (discrete) distributions – Uniform – normal gamma – Beta – Cauchy and Laplace (continuous) distributions.

UNIT - V Limit Theorems

Stochastic convergence – Bernaulli law of large numbers – Convergence of sequence of distribution functions – Levy-Cramer Theorems – de Moivre-Laplace Theorem – Poisson, Chebyshev, Khintchine Weak law of large numbers – Lindberg Theorem – Lapunov Theroem – Borel-Cantelli Lemma - Kolmogorov Inequality and Kolmogorov Strong Law of large numbers.

Total Lecture Hours90

18

18

18

18

18

BOOKS FOR STUDY:

M. Fisz, Probability Theory and Mathematical Statistics, John Wiley and Sons, New York, 1963

UNIT I: Chapter 1: Sections 1.1 to 1.7

Chapter 2 : Sections 2.1 to 2.9

UNIT II: Chapter 3 : Sections 3.1 to 3.8

UNIT-III: Chapter 4: Sections 4.1 to 4.7

UNIT-IV : Chapter 5 : Section 5.1 to 5.10 (Omit Section 5.11)

UNIT-V: Chapter 6 : Sections 6.1 to 6.4, 6.6 to 6.9 , 6.11 and 6.12. (Omit Sections 6.5, 6.10, 6.13

to 6.15)

BOOKS FOR REFERENCES:

- > R.B. Ash, Real Analysis and Probability, Academic Press, New York, 1972
- K.L.Chung, A course in Probability, Academic Press, New York, 1974
- ▶ R.Durrett, Probability : Theory and Examples, (2nd Edition) Duxbury Press, New York, 1996
- V.K.RohatgiAn Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern Ltd., New Delhi, 1988(3rd Print).
- S.I.Resnick, A Probability Path, Birhauser, Berlin, 1999.
- B.R.Bhat, Modern Probability Theory (3rd Edition), New Age International (P)Ltd, New Delhi, 1999.

WEB RESOURCES:

- http://ocw.mit.edu/ocwweb/Mathematics,
- http://www.opensource.org
- http://www.probability.net

Nature of Course	EMPLOYABILITY			1	SKILL OR		ENTRE	>		
Curriculum Relevance	LOCAL		REG	IONAL		NATION	AL	~	GLOBAL	
Changes Made in the Course	Percentage of Change		No Changes Made					New Course	~	
* Treat	20% as ea	ch unit	t (20*5 =	100%) a	nd calculat	te the percei	itage	of chang	ge for the cou	·se.

	SE OUTC	OMES:							K	LEVEL
After stu	udying this	s course, th	ne student	ts will be a	ble to:					
CO 1	define Di	stribution	Function,	ndom Varia to find J Distributi	oint Distr	ibution fu	unction, to	find Mar	rginal	1 to K5
CO2		Expectation Expect		nts and Ch	ebyshev Ir	nequality,	to solve R	egression o	of the K	1 to K5
СОЗ				tions, to de				find proba	-	1 to K5
CO4	To define One point, two-point, Binomial distributions, to solve problems of Hypergeometric and Poisson distributions, to define Uniform, normal, gamma, Bet distributions, to solve problems on Cauchy and Laplace distributions									1 to K5
C05	To discuss Stochastic convergence, Bernaulli law of large numbers, to elaborate Convergence of sequence of distribution functions, to prove Levy-Cramer Theorems and de Moivre-Laplace Theorems, to explain Poisson, Chebyshev, Khintchine Weak law of large numbers, to explain and solve problems on Kolmogorov Inequality and Kolmogorov Strong Law of large numbers.									
	NG WITH									
CO/PC		PO2	PO3	PO4	PO4 PO5 PO6 PO7 PO8		PO9	PO9 PO10		
(CAL	3	-	•		•		107			1010
CO1		1	3	2	3	3				1010
CO2	2	1	3	1	3	3 3				
CO2 CO3	2 3	1 2	3 3	1 1	3 3	3 3 3				
CO2	2	1	3	1	3	3 3				
CO2 CO3 CO4 CO5	2 3 1 3	1 2 2	3 3 3	1 1 2 3	3 3 3	3 3 3 3		L - L(OW	
CO2 CO3 CO4 CO5 S- STR	2 3 1 3	1 2 2 1	3 3 3	1 1 2 3	3 3 3 3	3 3 3 3			DW	
CO2 CO3 CO4 CO5 S- STR CO / P	2 3 1 3 0 NG	1 2 2 1	3 3 3 2	1 1 2 3	3 3 3 3	3 3 3 3 3	PSO4	L - L(OW PSC	
CO2 CO3 CO4 CO5 S- STR CO / P	2 3 1 3	1 2 2 1	3 3 3 2	1 1 2 3 M – M	3 3 3 3 EDIUM	3 3 3 3 3 03		L - L(
CO2 CO3 CO4 CO5 S- STR CO / P CO CO	2 3 1 3 0 NG 0 MAPPI 0S	1 2 2 1 NG: PSO1	3 3 3 2	1 1 2 3 M – M	3 3 3 EDIUM PS	3 3 3 3 3 03		L - L(
CO2 CO3 CO4 CO5 S- STR CO / P CO CO CO	2 3 1 3 0 NG 0 MAPPI 0 5 1	1 2 2 1 NG: PSO1 3	3 3 3 2	1 1 2 3 M - M PSO2 2	3 3 3 EDIUM PS(3 3 3 3 3 03 L		L - L(
CO2 CO3 CO4 CO5 S- STR CO / P CO CO CO CO CO CO CO CO CO CO CO CO CO	2 3 1 3 CONG O MAPPI OS 0 1 0 2 0 3 0 4	1 2 1 NG: PSO1 3 3 3 3 3 3	3 3 3 2	1 1 2 3 M - M PSO2 2 2 2 2 2 2	3 3 3 EDIUM PS(1 1 1 1 1	3 3 3 3 3 0 3		L - L(
CO2 CO3 CO4 CO5 S- STR CO / P CO CO CO CO CO CO CO CO CO CO CO CO CO	2 3 1 3 0 NG 0 MAPPI 0 5 2 3 2 3 2 4 5 5	1 2 1 1 NG: PSO1 3 3 3 3 3 3 3 3 3	3 3 3 2	1 1 2 3 M - M PSO2 2 2 2 2 2 2 2 2 2	3 3 3 EDIUM PS(1 1 1 1 1 1 1	3 3 3 3 3 0 1 1 1 1 1		L - L(
CO2 CO3 CO4 CO5 S- STR CO / P CO CO CO CO CO CO CO CO CO CO CO CO CO	2 3 1 3 CONG O MAPPI OS 0 1 0 2 0 3 0 4	1 2 1 NG: PSO1 3 3 3 3 3 3	3 3 3 2	1 1 2 3 M - M PSO2 2 2 2 2 2 2	3 3 3 EDIUM PS(1 1 1 1 1	3 3 3 3 3 0 1 1 1 1 1		L - L(

CONT	OURSE RIBUTIO D POS					
LESSO	ON PLAN:					
UNIT	Probability Theory	HRS	PEDAGOGY			
I	Random events – Probability axioms – Combinatorial formulae – conditional probability – Bayes Theorem – Independent events – Random Variables – Distribution Function – Joint Distribution – Marginal Distribution – Conditional Distribution – Independent random variables – Functions of random variables.					
II	Expectation- Moments – The Chebyshev Inequality – Absolute moments – Order parameters – Moments of random vectors – Regression of the first and second types.					
III	Properties of characteristic functions – Characteristic functions and moments – semi0invariants – characteristic function of the sum of the independent random variables – Determination of distribution function by the Characteristic function – Characteristic function of multidimensional random vectors – Probability generating functions.	18	Chalk & Talk			
IV	One point, two point, Binomial – Polya – Hypergeometric – Poisson (discrete) distributions – Uniform – normal gamma – Beta – Cauchy and Laplace (continuous) distributions.					
v	Stochastic convergence – Bernaulli law of large numbers – Convergence of sequence of distribution functions – Levy-Cramer Theorems – de Moivre-Laplace Theorem – Poisson, Chebyshev, Khintchine Weak law of large numbers – Lindberg Theorem – Lapunov Theroem – Borel-Cantelli Lemma - Kolmogorov Inequality and Kolmogorov Strong Law of large numbers.	18	Chalk & Talk			

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
Internal Cos	K Level	Sectio MC(Section B Either or	Section C				
Inter nur	COS		No. of. Questions	K - Level	Choice	Either or Choice			
CI	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)			
AI	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)			
CI	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)			
AII	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)			
	1	No. of Questions to be asked	4		4	4			
Question Pattern CIA I & II		No. of Questions to be answered	4		2	2			
		Marks for each question	1		5	8			
		Total Marks for each section	4		10	16			

		D	istribution of	f Marks with	K Level	CIA I & CIA II		
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %	
	K1	2			2	3.6	25	
	K2	2	10		12	21.4	25	
	K3		10	16	26	46.4	46.4	
CIA	K4			16	16	28.6	28.6	
Ι	K5							
	Marks	4	20	32	56	100	100	
	K1	2			2	3.6	7.2	
	K2	2			2	3.6	7.2	
CIA	K3		10	16	26	46.4	46.4	
II	K4		10	16	26	46.4	46.4	
	K5							
	Marks	4	20	32	56	100	100	

K1- Remembering and recalling facts with specific answers

- K2- Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	lue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or
S. No	Cos	K - Level	No. of Questions	K – Level	Choice) With K - LEVEL	Choice) With K - LEVEL
1	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)
2	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)
3	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)
4	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)
5	CO5	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)
No. of Qu	lestions to	be Asked	10		10	10
No. of	No. of Questions to be answered		10		10	5
Marks	Marks for each question		1		1	8
Total Ma	Total Marks for each section		10		10	40
	(Fig	ires in naren	thesis denotes	auestions show	uld be asked with the give	n K lovel)

(Figures in parenthesis denotes, questions should be asked with the given K level)

	Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5			5	3.6	4			
K2	5	20		25	17.8	18			
K3		30	32	62	44.3	44			
K4			48	48	34.3	34			
Marks	10	50	80	140	100	100			
NR• Higher le	vel of nerform	nce of the stu	idents is to be	assessed l	v attemntin	g higher level of K			

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Q. No.	Unit	СО	K-level		
Answer AL	L the question	ns	P	ART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answer	• ALL the que	estions		PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
				OR	
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
				OR	
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
				OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
			_,	OR	
15. b)	Unit - V	CO5	K3		

Answer A	ALL the quest	ions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K3		
				OR	
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
				OR	
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
				OR	
20. b)	Unit - V	CO5	K4		

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Topology			
Course Code	24PMTCC33	L	Р	С
Category	Core	6	-	5
COURSE OBJEC	CTIVES:			
To study top separation ax	ological spaces, continuous functions, connectedness, compactnes kioms.	s, countal	bility ar	nd
UNIT – I Topo	logical spaces			18
	 Basis for a topology – The order topology – The product topolog Closed sets and limit points. 	gy on X >	$\langle Y - T $	ne
UNIT – II Cont	inuous functions			18
Continuous function	ns – the product topology – The metric topology.			
UNIT - III Conn	lectedness			18
Connected spaces-	connected subspaces of the Real line – Components and local con	nectedne	ss.	
UNIT – IV Com	pactness			18
Compact spaces – c	ompact subspaces of the Real line – Limit Point Compactness – L	ocal Con	pactnes	S S
UNIT - V Coun	tability and Separation Axiom			18
•	eparation Axiom: The Countability Axioms – The separation Axi na – The Urysohnmetrization Theorem – The Tietz extension theorem		ormal sp	paces
	Total Lectu	ire Hou	rs	90

BOOKS FOR STUDY:

- James R. Munkres, *Topology* (2nd Edition) Pearson Education Pve. Ltd., Delhi-2002 (Third Indian Reprint)
 - Unit I Chapter 2 : Sections 12 to 17
 - Unit II Chapter 2 : Sections 18 to 21 (Omit Section 22)
 - Unit III Chapter 3 : Sections 23 to 25.
 - Unit IV Chapter 3 : Sections 26 to 29.
 - Unit V Chapter 4 : Sections 30 to 35.

BOOKS FOR REFERENCES:

- > J. Dugundji, *Topology*, Prentice Hall of India, New Delhi, 1975.
- > George F.Sinmons, Introduction to Topology and Modern Analysis, McGraw Hill Book Co., 1963
- > J.L. Kelly, General Topology, Van Nostrand, Reinhold Co., New York
- L.Steen and J.Subhash, Counter Examples in Topology, Holt, Rinehart and Winston, New York, 1970.
- S.Willard, *General Topology*, Addison Wesley, Mass., 1970.

WEB RESOURCES:

- http://mathforum.org,
- http://ocw.mit.edu/ocwweb/Mathematics
- http://www.opensource.org,
- http://en.wikipedia.org

Nature of Course	EMPLOYABILITY			✓	SKILL OR	KILL ORIENTED			ENTREPRENEURSHIP		
Curriculum Relevance	LOCAL		REG	IONAL		NATION	AL	~	GLOBAL		
Changes Made in the Course	Percentage of Change			No Changes Made		٦		New Course			

COURS	SE OUTC	OMES:]	K LEVEL
After st	udying this	course, tł	ne student	s will be a	ble to:					
CO1							basic defini s for definii			K1 to K5
CO2	Understand properties.		y, compac	tness, conr	nectedness,	homeomo	orphism and	l topologio	cal 1	K1 to K5
CO3	•		1 0	cal concep			•			K1 to K5
CO4	for a given	subset of	a topologi	cal space.	1 0	1	either a lin	1		K1 to K5
CO5	Hausdorff and develop tools to identify when two are equivalent(homeomorphic).								able,	K1 to K5
	NG WITH			1						
CO/PC		PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10
C01	3	1	3	2	3	3				
CO2	2	1	3	1	3	3				
CO3	3	2	3	1	3	3				
CO4 CO5	1 3	2 1	3 2	2 3	3	3 3				
S- STR										
	O MAPPI	NG:			EDIOM			<u> </u>		
				D 000	DO	00	D 004	•	DO	05
	OS	PSO1	- ,	PSO2	PS	03	PSO4	4 PSO5		
C	D 1	3		2	1					
C	0 2	3		2	1					
C	D 3	3		2	1					
C) 4	3		2	1	L				
C	D 5	3		2	1	L				
WEIG	HTAGE	15		10	5	5				
PERCE OF CO CONTE	GHTED ENTAGE COURSE 3 2 1 RIBUTIO O POS									
LESSO	N PLAN:									
UNIT			1	ſopology	,			HRS	PE	DAGOGY
I	Topological spaces – Basis for a topology – The order topology – The product topology on $X \times Y$ – The subspace topology – Closed sets and limit points								С	halk & Talk

II	Continuous functions – the product topology – The metric topology.	18	Chalk & Talk
III	Connected spaces- connected subspaces of the Real line – Components and local connectedness.	18	Chalk & Talk
IV	Compact spaces – compact subspaces of the Real line – Limit Point Compactness – Local Compactness.	18	Chalk & Talk
v	The Countability Axioms – The separation Axioms – Normal spaces – The Urysohn Lemma – The Urysohnmetrization Theorem – The Tietz extension theorem.	18	Chalk & Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
Internal Cos		K Level	Sectio MC(n A	Section B Either or	Section C			
mernar	COS	K Level	No. of. Questions	K - Level	Choice	Either or Choice			
CI	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)			
AI	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)			
CI	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)			
AII	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)			
	1	No. of Questions to be asked	4		4	4			
Question Pattern CIA I & II		No. of Questions to be answered	4		2	2			
		Marks for each question	1		5	8			
		Total Marks for each section	4		10	16			

		D	istribution of	f Marks with	K Level	CIA I & CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.6	25
	K2	2	10		12	21.4	23
	K3		10	16	26	46.4	46.4
CIA	K4			16	16	28.6	28.6
I	K5						
	Marks	4	20	32	56	100	100
	K1	2			2	3.6	7.2
	K2	2			2	3.6	7.2
CIA	K3		10	16	26	46.4	46.4
I	K4		10	16	26	46.4	46.4
	K5						
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	lue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or
S. No	No Cos K	K - Level	No. of	K – Level	Choice) With	Choice) With
			Questions	II Lever	K - LEVEL	K - LEVEL
1	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)
2	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)
3	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)
4	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)
5	CO5	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)
No. of Qu	iestions to	be Asked	10		10	10
No. of	No. of Questions to be answered		10		10	5
Marks	Marks for each question		1		1	8
Total Ma	rks for ea	ich section	10		10	40
	(Figu	ires in paren	thesis denotes,	questions show	uld be asked with the give	en K level)

		Distrib	oution of Mar	ks with H	K Level	
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5			5	3.6	4
K2	5	20		25	17.8	18
K3		30	32	62	44.3	44
K4			48	48	34.3	34
Marks	10	50	80	140	100	100

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	CO	K-level		
Answer AL	L the question	ns	P	ART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
I				c)	d)

Answer	ALL the que	estions		PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
	· · · ·			OR	
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
				OR	
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
	· · · ·			OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
				OR	
15. b)	Unit - V	CO5	K3		

Answer A	ALL the quest	ions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K3		
				OR	
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
				OR	
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
				OR	
20. b)	Unit - V	CO5	K4		

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Combinatorial Mathematics			
Course Code	24PMTEC31	L	Р	С
Category	Elective	4	-	3
COURSE OBJEC	TIVES:			
 To study the To identify the indices. To familiarized 	d the rules of sum and product Generating functions, Partitions of integers. he recurrence relations with constant coefficients, and Recurrence relate e the concept of principle of inclusion and exclusion. d fundamental theorem.	ations	with tw	7 0
UNIT – I				12
The rules of Sum and distinct Objects.	Product - Permutations - Combinations - Distributions of Distinct Objects	- Distr	ibutions	of No
UNIT – II				12
Generating Functions Non distinct Cells - Pa	for Combinations - Enumerators for Permutations – Distributions of Distributions of Integers.	inct Ol	bjects in	to
UNIT - III				12
Linear Recurrence rel	ations with Constant Coefficients - Solution by the technique of Generating	Funct	tions	
UNIT – IV				12
The Principle of Inclu Relative Positions.	sion and Exclusion - The General Formula - Derangements - Permutations	with R	estrictio	ns on
UNIT - V				12
Equivalence Classes u Functions - Polya's Fu	under a Permutation Group - Equivalence Classes of Functions -Weights an undamental Theorem.	nd Inve	entories	of
	Total Lecture	Hou	rs	60

BOOKS FOR STUDY:

- C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill Inc., Newyork, 1968.
 - Unit I: Chapter 1: Sections 1.1 to 1.6
 - Unit II Chapter 2: Sections 2.1 to 2.5
 - Unit III: Chapter 3: Sections 3.1 to 3.3
 - Unit IV: Chapter 4: Sections 4.1 to 4.5
 - Unit V: Chapter 5: Sections 5.1 to 5.6 (Except 5.2)

BOOKS FOR REFERENCES:

- J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, 2001.
- > TituAndreescu and ZumingFeng, A Path to Combinatorics, Springer Science & Business Media, 2004.
- > Douglas West, Combinatorial Mathematics, Cambridge University Press, 2020

WEB RESOURCES:

- https://www.isinj.com/mtusamo/Applied%20Combinatorics%20(6th%20Edition)%20by%20Alan%20Tuc ker%20Wiley%20(2012).pdf
- http://cseweb.ucsd.edu/~gill/AlgCombSite/Resources/CCSRefP1.pdf
- https://en.wikipedia.org/w/index.php?title=Special:WhatLinksHere&target=A lgorithm

Nature of Course	EMPLOYABILITY				SKILL ORIENTED			ENTRE		
Curriculum Relevance	LOCAL	LOCAL REGIONA		IONAL	✓	NATION	AL		GLOBAL	
Changes Made in the Course	Percentage of Change				No Char	nges Made	٩		New Course	

* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	E OUTC	OMES:							ŀ	K LEVEL	
After stu	idying this	course, th	ne studen	ts will be a	ble to:						
CO1	Understand	the rules of	f Sum and	Product of P	ermutations	and Comb	vinations.		J	K1 to K5	
CO2	Discuss dis	tributions o	f Distinct	Objects into 1	Non-distinc	t Cells and	Partitions of	Integers.	I	K1 to K5	
CO3	Indices.	-	•	ue of Generat						K1 to K5	
CO4	Make use o Polynomial		pts of Pern	nutations with	h Restrictio	ns on Relat	tive Positions	and the Ro	ook J	K1 to K5	
CO5	Analyze eq	uivanlence	classes of	functions in	Polya's The	eory]	K1 to K5	
MAPPI	NG WITH	PROGR		TCOMES:				1			
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	3	3	3	1	1	1					
CO2	3	3	2	2	1	-					
CO3	3	3	3	1	1	1					
CO4	3	3	2	2	1	-					
CO5	3	3	2	2	2	1					
S- STR	ONG			M – M	EDIUM			L - L(W C		
CO / P	O MAPPI	NG:									
C	os	PSO1	L	PSO2	PS	03	PSO4	· F		PSO5	
CC	01	3		2	1	L					
CC) 2	3		2	1						
CC) 3	3		2	1	<u> </u>					
CC) 4	3		2	1	<u> </u>					
CC) 5	3		2	1	L					
WEIGI	HTAGE	15		10	5	5					
PERCE OF CO CONTR	HTED NTAGE DURSE IBUTIO POS	3		2	1						
LESSO	N PLAN:										
UNIT		Co	ombinat	orial Mat	hematic	s		HRS	PEI	DAGOGY	
I	Permutation	Permutations and Combinations Introduction - The rules of Sum and Product - Permutations - Combinations - Distributions of Distinct Objects - Distributions of Non distinct Objects							12 Talk		
II	Combinati	enerating Functions Introduction - Generating Functions for ombinations - Enumerators for Permutations – Distributions of istinct Objects into Non distinct Cells - Partitions of Integers –							12 Chalk & Talk		

III	Recurrence Relation Introduction - Linear Recurrence relations with Constant Coefficients - Solution by the technique of Generating Functions - Recurrence Relations with Two Indices	12	Chalk & Talk
IV	The Principle of Inclusion and Exclusion Introduction - The Principle of Inclusion and Exclusion - The General Formula - Derangements - Permutations with Restrictions on Relative Positions - The Rook Polynomials	12	Chalk & Talk
v	Theory of Counting Introduction - Equivalence Classes under a Permutation Group - Equivalence Classes of Functions - Weights and Inventories of Functions - Polya's Fundamental Theorem - Generalization of Polya's Theorem	12	Chalk & Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
• / •	Car	K Level	Sectio MC0		Section B Either or	Section C					
Internal	ernal Cos	K Levei	No. of. Questions	K - Level	Choice	Either or Choice					
CI	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)					
AI	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)					
CI	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)					
AII	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)					
	<u>.</u>	No. of Questions to be asked	4		4	4					
Quest		No. of Questions to be answered	4		2	2					
Pattern CIA I & II		Marks for each question	1		5	8					
		Total Marks for each section	4		10	16					

		D	istribution of	f Marks with	K Level	CIA I & CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.6	25
	K2	2	10		12	21.4	
	K3		10	16	26	46.4	46.4
CIA	K4			16	16	28.6	28.6
I	K5						
	Marks	4	20	32	56	100	100
	K1	2			2	3.6	7.2
	K2	2			2	3.6	7.2
CIA	K3		10	16	26	46.4	46.4
I	K4		10	16	26	46.4	46.4
	K5						
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	lue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or
S. No	Cos	K - Level	No. of	K – Level	Choice) With	Choice) With
			Questions	II Lever	K - LEVEL	K - LEVEL
1	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)
2	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)
3	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)
4	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)
5	CO5	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)
No. of Qu	iestions to	be Asked	10		10	10
No. of	No. of Questions to be answered		10		10	5
Marks	Marks for each question		1		1	8
Total Ma	Total Marks for each section		10		10	40
	(Figu	ires in paren	thesis denotes,	questions show	uld be asked with the give	en K level)

Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5			5	3.6	4				
K2	5	20		25	17.8	18				
K3		30	32	62	44.3	44				
K4			48	48	34.3	34				
Marks	10	50	80	140	100	100				

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
Answer AL	L the question	ns	P	ART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
I				c)	d)

Answer	ALL the que	estions		PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
	· · · ·			OR	
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
				OR	
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
	· · · ·			OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
				OR	
15. b)	Unit - V	CO5	K3		

Answer A	ALL the quest	ions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K3		
				OR	
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
				OR	
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
				OR	
20. b)	Unit - V	CO5	K4		

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Mathematical Documentation Using Latex							
Course Code	24PMTSP31	L	Р	С				
Category	Skill	-	2	2				
COURSE OBJEC	TIVES:							
To introduce students with a software that is used for typesetting especially in Mathematics and develop typing skill for students with various documents formats of LaTeX.								
List of Programm	nes							

- 1. Creation of a document with different alignments
- 2. Typing a Letter for applying a job.
- 3. Creation of own Bio Data.
- 4. Creating a Table Structure.
- 5. Typing a Mathematical Expression involving Differentiation, Integration and Trigonometry.
- 6. Typing a Mathematical Expression using all Expressions and Inequalities.
- 7. Creation of an Article using Latex.
- 8. Inserting Picture in a Latex.
- 9. Preparing a question paper in Latex Format.
- 10. Creation of Powerpoint Presentation in Latex.

Total Lecture Hours 30

BOOKS FOR REFERENCES:

- > David F Griffiths and Desmond J. Higham, Learning LaTex, SIAM Publishers, Phildelphia, 1996
- A document preparation system LATEX, Second Edition, Leslie Lamport
- > LATEX- A Beginner Guide to Professional documentation, S. Swapna Kumar.

WEB RESOURCES:

- https://services.math.duke.edu/computing/tex/online.html,
- https://www.overleaf.com/learn

Nature of Course	EMPLOYABILITY				SKILL ORIENTED		~	ENTREPRENEURSHIP)	
Curriculum Relevance	LOCAL REG		IONAL		NATIONAL			GLOBAL		✓	
Changes Made in the Course	Percentage of Change				No Changes Made			New Course			✓
* Treat 20% as each unit ($20*5=100\%$) and calculate the percentage of change for the course.											

COURS	SE OUTC	OMES:							K	LEVEL	
After st	udying this	course, th	ne student	s will be a	ble to:						
CO1	Know how to create basic types of LaTex documents (article).										
CO2	typeset latex commands									K1 to K5	
CO3	create a paragraph, symbols, comments and font style.									K1 to K5	
CO4	change font characteristics.										
CO5	know about various environments										
	NG WITH	PROGR									
CO/PC		PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	
CO 1	3	1	1	1	1	2					
CO2	3	2	1	1	1	2					
CO3	3	2	1	1	1	1					
C04	3	1	1	1	1	1					
C05											
S- STR				NI – NI.	EDIUM			L - L	JW		
CO / P	O MAPPI	NG:									
С	os	PSO1	-	PSO2	PS	03	PSO4	ŀ	PSC)5	
C	D 1	3		2	1						
C	0 2	3		3	2						
					2						
	03	3		2							
CO 4		3		2	1						
CO 5		3		2		2					
WEIGHTAGE		15	11		8						
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTIO N TO POS		3	2		1						

LESSON PLAN:

LESSON FLAN:		
List of Programmes	HRS	PEDAGOGY
 Creation of a document with different alignments Typing a Letter for applying a job. Creation of own Bio – Data. Creating a Table Structure. Typing a Mathematical Expression involving Differentiation, Integration and Trigonometry. Typing a Mathematical Expression using all Expressions and Inequalities. Creation of an Article using Latex. Inserting Picture in a Latex. Preparing a question paper in Latex Format. Creation of Powerpoint Presentation in Latex. 	30	

	L	Learning Outcon Formativ Articulation Mapping	ve Examinat	ion - Blue l	Print	,	
Internal	Cos	K Level	Syntax & Semantic s	Progra mming principl es	Concept Applications	Codin g & Imple mentat ion	Debug ging & Outpu
	CO1	K1	5				
	CO2	K2		5			
CIA	CO3	К3			5		
	CO4	K4				5	
	CO5	K4					5
Question Pattern CIA		No. of Questions to be asked	2	2	2	2	2
		No. of Questions to be answered	2	2	2	2	2
		Marks for each question	2.5	2.5	2.5	2.5	2.5
		Total Marks for each section	5	5	5	5	5

	Distribution of Marks with K Level CIA										
	K Level	Syntax & Semantics	Program ming principles	Concept Applicatio ns	Codin g Output		Total Marks	% of (Mar ks witho ut choic e)	Co nso lid ate d %		
	K1	5					5	20	20		
	K2		5				5	20	20		
	K3			5			5	20	20		
CIA	K4				5	5	10	40	40		
	Marks						25	100	100		

K2- Basic understanding of facts and stating main ideas with general answers

- K3- Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summat	ive Exam	ination – B	lue Print Artic	culation Map	ping – K Level with C	ourse Outco	mes (COs)		
S. No	Cos	K - Level	Syntax & Semantics	ming		Coding& Impleme ntation	Debuggin g & Output		
1	CO1	K1	15						
2	CO2	K2		15					
3	CO3	K3			15				
4	CO4	K4				15			
5	CO5	K4					15		
No. of Qu	estions to	be Asked	2	2	2	2	2		
	No. of Questions to be answered		-		2	2	2	2	2
Marks	Marks for each question		7.5	7.5	7.5	7.5	7.5		
Total Ma	rks for ea	ach section	15	15	15	15	15		

(Figures in parenthesis denotes, questions should be asked with the given K level)

	Distribution of Marks with K Level CIA										
	K Level	Syntax & Semantics	Program ming principles	ming Applicatio		Codin g Output		% of (Mar ks witho ut choic e)	Co nso lid ate d %		
	K1	15					15	20	20		
	K2		15				15	20	20		
	K3			15			15	20	20		
CIA	K4				15	15	30	40	40		
	Marks						75	100	100		

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Mathematics for Competitive Examinations		
Course Code	24PMTNM31 L	Р	С
Category	Non Major Elective6	-	3
COURSE OBJEC	TIVES:		
 To familiarize To convert rea To use these c 	owledge on numbers, data interpretation. the application through various statistical methods. Il data into a statistical data interpretation. oncepts in competitive examinations. he computational skills.		
UNIT – I			18
Ratio and proportion	n		
UNIT – II			18
Simple Interest – Co	mpound Interest		
UNIT - III			18
Proportions – Conne	ectives – Conditional & Biconditional Proportions – Tautology and Contradic	tion	
UNIT – IV			18
Equivalence of Prop	oortions – Duality – Tautological Implications – Truth Table Techniques		
UNIT - V			18
Non Verbal Reason	ing and Number Series		
	Total Lecture Hours		90

BOOKS FOR STUDY:

> Book Material will be provided by the department

BOOKS FOR REFERENCES:

- **R**.S Agarwal, **Quantitative Aptitude**, 4th Edition, Tata McGraw Hill Publications, 2011, New Delhi.
- > T Veerarajan, **Discrete Mathematics**, Mcgraw Hill Publication.

WEB RESOURCES:

- https://thecompanyboy.com/rs-aggarwal-quantitative-aptitude-pdf-freedownload
- https://www.toprankers.com/exams/quantitative-aptitude-questions-pdf/
- https://www.sawaal.com/aptitude-reasoning/quantitative-aptitude-arithmeticability-questions-and-answers.html

Nature of Course	EMPLOYABILITY			1	SKILL OR		ENTRE	P		
Curriculum Relevance	LOCAL REC			IONAL	NATIONAL		AL	~	GLOBAL	
Changes Made in the Course	Percentage of Change				No Chan	iges Made			New Course	✓
* Treat	* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.									

COURS	SE OUTCO	OMES:							K	LEVEL
After stu	udying this	course, th	ne student	s will be a	ble to:					
CO1	Understand	d the conce	epts of Ma	thematics a	along with	analytical	ability		K	1 to K5
CO2	Develop th	e mathema	atical prob	lem solvin	g skill				K	1 to K5
CO3	Evaluate th	e problems	on data int	erpretation					K	1 to K5
CO4	Identify the	e time rela	ted proble	ms and sol	ving				K	1 to K5
CO5	Illustrate a	ppropriate	methods f	or solving	Permutatio	on and Con	nbination		K	1 to K5
MAPPI	NG WITH	PROGR	AM OUI	COMES:						
CO/PC	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10
CO 1	3	2	3	3	3	2				
CO2	3	2	3	3	3	3				
CO3	3	2	3	3	3	2				
CO4	3	3	2	3	3	2				
CO5	2	3	2	3	3	2				
S- STR	ONG			M – M	EDIUM			L - L(W	
CO / P	O MAPPI	NG:								
C	os	PSO1		PSO2	PS	03	PSO4	ŀ	PSC)5
C	D 1	3		2	1	L				
C	D 2	3		2	1	L				
C	D 3	3		2	1	L				
C	D 4	3		2	1	L				
C	CO 5 3 2				1	1				
WEIG	HTAGE	15		10	5	5				
WEIGHTED PERCENTAGE OF COURSE 3 CONTRIBUTIO N TO POS		3		2	1	L				

LESSO	LESSON PLAN:									
UNIT	Mathematics for Competitive Examinations	HRS	PEDAGOGY							
I	Ratio and proportion.	18	PPT, Chalk & Talk, quiz							
II	Simple Interest – Compound Interest	18	Chalk & Talk, PPT							
III	Proportions – Connectives – Conditional & Biconditional Proportions – Tautology and Contradiction	18	Chalk & Talk							
IV	Equivalence of Proportions – Duality – Tautological Implications – Truth Table Techniques	18	Chalk & Talk, Assignment							
v	Non Verbal Reasoning and Number Series	18	Chalk & Talk, PPT							

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
Internal	Cos	K Level	Section MC(Section B Either or	Section C Either or Choice					
Internar	03	K Level	No. of. Questions	K - Level	Choice						
CI	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)					
AI	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)					
CI	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)					
AII	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)					
	1	No. of Questions to be asked	4		4	4					
Quest		No. of Questions to be answered	4		2	2					
Pattern CIA I & II		Marks for each question	1		5	8					
		Total Marks for each section	4		10	16					

		D	istribution of	f Marks with	K Level	CIA I & CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.6	25
	K2	2	10		12	21.4	
	K3		10	16	26	46.4	46.4
CIA	K4			16	16	28.6	28.6
I	K5						
	Marks	4	20	32	56	100	100
	K1	2			2	3.6	7.2
	K2	2			2	3.6	7.2
CIA	K3		10	16	26	46.4	46.4
I	K4		10	16	26	46.4	46.4
	K5						
	Marks	4	20	32	56	100	100

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	lue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)					
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or					
S. No	Cos	K - Level	No. of	K – Level	Choice) With	Choice) With					
			Questions	II Lever	K - LEVEL	K - LEVEL					
1	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)					
2	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)					
3	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)					
4	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)					
5	CO5	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)					
No. of Qu	iestions to	be Asked	10		10	10					
No. of	No. of Questions to be answered		10		10	5					
Marks for each question		1		1	8						
Total Ma	Total Marks for each section		10		10	40					
	(Figu	ires in paren	(Figures in parenthesis denotes, questions should be asked with the given K level)								

	Distribution of Marks with K Level											
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %						
K1	5			5	3.6	4						
K2	5	20		25	17.8	18						
К3		30	32	62	44.3	44						
K4			48	48	34.3	34						
Marks	10	50	80	140	100	100						

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	CO	K-level		
Answer AL	L the question	ns	P	ART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
I				c)	d)

Answer	ALL the que	estions		PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
	· · · ·			OR	
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
				OR	
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
	· · · ·			OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
				OR	
15. b)	Unit - V	CO5	K3		

Answer A	ALL the quest	ions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K3		
				OR	
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
				OR	
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
				OR	
20. b)	Unit - V	CO5	K4		

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

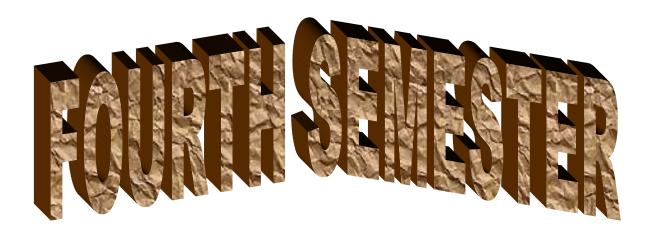
FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Internship Report						
Course Code	24PMTIN31	L	Р	С			
Category	Summer Internship	-	-	1			
Course Description							

The students have to attend a 30 hours of Internship of their own choice to be carried out in I year summer vacation.

Guidelines For Internship:

- 1. The Project is conducted by the following Course Pattern. The internship period should be minimum 30 hours.
- 2. Each group should produce permission letter as well as the attendance certificate.
- 3. There will be one Faculty guide.
- 4. The students should submit an Internship Training Report (Maximum 30 Pages).
- 5. The Marks for Internship Training will be awarded only on the basis of the Internship Training Report.
- 6. Prior permission may be obtained from the organization in advance by the students concerned and information shall be passed onto the colleges thus enabling the training supervision by the concerned faculties authorized by the college.
- 7. Daily postal or electronic reporting should be obtained to ensure coherent and comprehensive training during the training period.
- 8. A final report [Institutional Training Record ITR] containing the introduction of the industry, the profile of the company and a valid conclusion indicating the benefits of the training shall be given not exceeding 30 [A4] pages [in a spiral- bound form/pre-printed record designed for this purpose]


Internal

	- 100
<pre>}</pre>	75
}	25
	}

Nature of Course	EMPLC	YABII	LITY	1	SKILL ORIENTED			ENTREPRENEURSHIP		
Curriculum Relevance	LOCAL		REG	IONAL	~	NATION	AL	GLOBAL		
Changes Made in the Course	Percentag	e of Ch	ange		No Cha	nges Made		New Course		~

* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	SE OUTC	OMES:								K	LEVEL
After st	udying this	course, tl	ne student	ts will be a	ble to:						
CO 1	private/pu	blic compa	nies or go	ronment an vernment e	entities	-		•		K	1 to K5
CO2	work expe	rience		and attitude						K	1 to K5
СОЗ	Explore career alternatives by Integrating theory and practice and learn to appreciate work and its function in the economy.								eciate	K	1 to K5
CO4	interperson	nal and oth	er critical							K	1 to K5
CO5	Examine detail.	employer-v	valued ski	ills such a	s teamwo	rk, comm	unications	and attenti	ion to	K	1 to K5
MAPPI	NG WITH	PROGR	AM OU	COMES	•				1		
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10
CO1	2	3	3	3	1	3					
CO2	1	2	2	1	2	1					
CO3	2	2	3	3	2	1					
CO4	3	2	3	2	1	2					
CO5	3	3	3	3	3	3					
3- STR	ONG			2 – MI	EDIUM			1 - LO	SW		
CO / P	O MAPPI	NG:									
С	os	PSO1	L	PSO2	PS	03	PSO4	1	Р	so	5
C	D 1	3		2	1	L					
C	02	3		2]	L					
C) 3	3		2	1	L					
C) 4	3		2	1	L					
C	D 5	3		2	1	L					
WEIG	HTAGE										
PERCE OF CO CONTE	HTED NTAGE DURSE HBUTIO POS	3		2]	L					

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Functional Analysis			
Course Code	24PMTCC41	L	Р	С
Category	Core	6	-	5
COURSE OBJEC	TIVES:			

To provide students with a strong foundation in functional analysis, focusing on spaces, operators and fundamental theorems. To develop student's skills and confidence in mathematical analysis and proof techniques.

UNIT – I Banach Spaces	18
The definition and some examples – Continuous linear transformations – The Hahn-Banach theorem natural imbedding of N in N^{**} - The open mapping theorem – The conjugate of an Operator.	– The
UNIT – II Hilbert Spaces	18
The definition and some simple properties–Orthogonal complements–Ortho normal sets–The conjugation space <i>H</i> *-The adjoint of an operator–self-adjoint operators-Normal and unitary operators – Projection	
UNIT - III Finite-Dimensional Spectral Theory	18
Matrices – Determinants and the spectrum of an operator –The spectral theorem.	
UNIT – IV General Preliminaries on Banach Algebras	18
The definition and some examples – Regular and singular elements – Topological divisors of zero – spectrum – The formula for the spectral radius– The radical and semi-simplicity	The
UNIT - V The Structure of Commutative Banach Algebras	18
The Gelfand mapping – Application of the formula $r(x) = \lim x^n ^{1/n}$ Involutions in Ban	ach
algebras-The Gelfand-Neumark theorem	
Total Lecture Hours	90

BOOKS FOR STUDY:

G.F.Simmons, Introduction to Topology and Modern Analysis, McGraw Hill Education (India) Private Limited, New Delhi, 1963

UNIT I: Chapter 9:Sections 46-51 UNIT II: Chapter10:Sections52-59 UNIT III: Chapter 11:Sections 60-62 UNIT IV: Chapter 12:Sections 64-69 UNIT V: Chapter 13:Sections 70-73

BOOKS FOR REFERENCES:

- **W.Rudin**, Functional Analysis, McGraw Hill Education (India) Private Limited, New Delhi, 1973.
- > B.V. Limaye, Functional Analysis, New Age International, 1996.
- C. Goffman and G. Pedrick, First course in Functional Analysis, Prentice Hall of India, NewDelhi,1987.
- E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, New York, 1978.
- M. Thamban Nair, Functional Analysis, A First course, Prentice Hall of India, New Delhi, 2002

WEB RESOURCES:

- http://mathforum.org
- http://ocw.mit.edu/ocwweb/Mathematics,
- http://www.opensource.org,
- http://en.wikiepedia.org

Nature of Course	EMPLOYABILITY			1	SKILL OR		ENTREPRENEURSHIP			
Curriculum Relevance	LOCAL	CAL REGIONAL NATIONAL		~	GLOBAL					
Changes Made in the Course	Percentag	e of Ch	lange		No Chan	ges Made			New Course	
* Treat	* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.									

COURS	SE OUTCO	OMES:							K	LEVEL
After stu	udying this	course, th	ne student	s will be a	ble to:					
CO1	Understand	d the Bana	ch spaces a	and Transf	ormations	on Banach	Spaces.		K	1 to K5
CO2	Prove Hah	n Banach t	heorem ar	id open ma	pping theo	rem.			K	1 to K5
CO 3	Describe o	perators ar	nd fundam	ental theor	ems				K	1 to K5
CO4	Validate or	Validate orthogonal and orthonormal sets.								
CO5	Analyze ar	nd establish	n the regul	ar and sing	ular eleme	nts.			K	1 to K5
MAPPI	NG WITH	PROGR	AM OUI	COMES:						
CO/PC	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10
CO1	3	1	3	2	3	3				
CO2	2	1	3	1	3	3				
CO3	3	2	3	1	3	3				
CO4	1	2	3	2	3	3				
CO5	3	1	2	3	3	3				
S- STR				M – M	EDIUM			L - L(WC	
CO / P	O MAPPI	NG:								
C	os	PSO1		PSO2	PS	03	PSO4	F	PSC)5
C	D 1	3		2	1					
C	0 2	3		2	1					
C	D 3	3		2	1	-				
C) 4	3		2	1	-				
C	D 5	3		2	1	-				
WEIGHTAGE 15 10					5	5				
PERCE OF CONTE	HTED NTAGE DURSE LIBUTIO POS	3		2	1					

LESSC	LESSON PLAN:							
UNIT	Functional Analysis	HRS	PEDAGOGY					
I	The definition and some examples – Continuous linear transformations – The Hahn-Banach theorem – The natural imbedding of N in N^{**} - The open mapping theorem – The conjugate of an Operator.	18	PPT, Chalk & Talk, quiz					
II	The definition and some simple properties–Orthogonal complements– Ortho normal sets–The conjugate space H*-The adjoint of an operator– self-adjoint operators-Normal and unitary operators – Projections.	18	Chalk & Talk, PPT					
III	Finite-Dimensional Spectral Theory: Matrices – Determinants and the spectrum of an operator –The spectral theorem.	18	Chalk & Talk					
IV	The definition and some examples – Regular and singular elements – Topological divisors of zero – The spectrum – The formula for the spectral radius– The radical and semi-simplicity.	18	Chalk & Talk, Assignment					
v	The Structure of Commutative Banach Algebras: The Gelfand mapping – Application of the formula $r(x) = \lim x^n ^{1/n}$. Involutions in Banach algebras-The Gelfand-Neumark theorem.	18	Chalk & Talk, PPT					

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)									
Internal	Cos	K Level	Sectio MC0		Section B Either or	Section C				
	COS		No. of. Questions	K - Level	Choice	Either or Choice				
CI	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)				
AI	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)				
CI	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)				
AII	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)				
		No. of Questions to be asked	4		4	4				
Quest		No. of Questions to be answered	4		2	2				
Pattern CIA I & II		Marks for each question	1		5	8				
		Total Marks for each section	4		10	16				

		D	istribution of	f Marks with	K Level	CIA I & CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.6	25
	K2	2	10		12	21.4	23
	K3		10	16	26	46.4	46.4
CIA	K4			16	16	28.6	28.6
Ι	K5						
	Marks	4	20	32	56	100	100
	K1	2			2	3.6	7.2
	K2	2			2	3.6	7.2
CIA	K3		10	16	26	46.4	46.4
II	K4		10	16	26	46.4	46.4
	K5						
	Marks	4	20	32	56	100	100

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	lue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or
S. No	Cos	K - Level	No. of	K – Level	Choice) With	Choice) With
			Questions	II Lever	K - LEVEL	K - LEVEL
1	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)
2	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)
3	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)
4	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)
5	CO5	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)
No. of Qu	iestions to	be Asked	10		10	10
No. of	f Question answered		10		10	5
Marks	for each	question	1		1	8
Total Ma	rks for ea	ich section	10		10	40
	(Figu	ires in paren	thesis denotes,	questions show	uld be asked with the give	en K level)

Distribution of Marks with K Level											
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %					
K1	5			5	3.6	4					
K2	5	20		25	17.8	18					
K3		30	32	62	44.3	44					
K4			48	48	34.3	34					
Marks	10	50	80	140	100	100					

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
Answer AL	L the question	ns	P	ART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Answer	ALL the que	estions		PART – B	(5 x 5 = 25 Marks)						
11. a)	Unit - I	CO1	K2								
	OR										
11. b)	Unit - I	CO1	K2								
12. a)	Unit - II	CO2	K3								
				OR							
12. b)	Unit - II	CO2	K3								
13. a)	Unit - III	CO3	K2								
				OR							
13. b)	Unit - III	CO3	K2								
14. a)	Unit - IV	CO4	K3								
				OR							
14. b)	Unit - IV	CO4	K3								
15. a)	Unit - V	CO5	K3								
				OR							
15. b)	Unit - V	CO5	K3								

Answer A	ALL the quest	ions		PART – C	(5 x 8 = 40 Marks)						
16. a)	Unit - I	CO1	K3								
	OR										
16. b)	Unit - I	CO1	K3								
17. a)	Unit - II	CO2	K4								
				OR							
17. b)	Unit - II	CO2	K4								
18. a)	Unit - III	CO3	K3								
				OR							
18. b)	Unit - III	CO3	K3								
19. a)	Unit - IV	CO4	K4								
				OR							
19. b)	Unit - IV	CO4	K4								
20. a)	Unit - V	CO5	K4								
				OR							
20. b)	Unit - V	CO5	K4								

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Integral Equations		
Course Code	24PMTCC42 L	Р	С
Category	Core 6	-	5
COURSE OBJEC	CTIVES:		
To understandTo familiarize	the key concept of popular and useful transformations I the relationship between integral and differential equations. Fredholm theory egral equation in various transformations.		
UNIT – I			18
The Inner or Scalar	ns – Special kinds of Kernels – Eigen values and Eigen functions – Convolu Product of Two Functions – Reduction to a System of Algebraic Equations Approximate Method		0
UNIT – II			18
Integral transformation	tion methods – introduction – Fourier transform – Laplace transform –	applica	tion to
Volterra integral eq	uations with Convolution type kernels – examples.		
Volterra integral eq UNIT - III	uations with Convolution type kernels – examples.		18
UNIT - III Relationship betwe	uations with Convolution type kernels – examples. een linear differential equations and Volterra integral equations, resolve quations, solution of integral equation by resolvent kernel, the method		mel of
UNIT - III Relationship betwe Volterra integral ed approximations	en linear differential equations and Volterra integral equations, resolve		mel of
UNIT - III Relationship betwe Volterra integral ed approximations UNIT - IV Volterra integral ed	en linear differential equations and Volterra integral equations, resolve	of suce	rnel of cessive 18
UNIT - III Relationship betwe Volterra integral ed approximations UNIT – IV Volterra integral ed Abel's problem, Ab	the matrix of the second seco	of suce	rnel of cessive 18
UNIT - III Relationship betwe Volterra integral ed approximations UNIT – IV Volterra integral ed Abel's problem, Ab UNIT - V Fredholm equation	the matrix of the second seco	of succ	nel of cessive 18 regrals, 18

BOOKS FOR STUDY:

Linear Integral Equations: Theory & Technique (Second Ed.) by Ram P. Kanwal, Springer Science& Business Media, 2013. Unit 1: Chapter 1 full, chapter 2.1 to 2.5 Unit 2: Chapter 9.1 to 9.5.

Problems and exercises in Integral Equations by George Yankovsky, MIR Publishers.

Unit 3: Chapter 1 (2,3,4) Unit 4: Chapter 1 (7,8,9,10) Unit 5: Chapter 2 (12,13,14,15)

BOOKS FOR REFERENCES:

- > "Differential Equations" by G.F. Simmons, Tata McGraw-Hill, New Delhi, 1979.
- "Ordinary Differential Equations and Stability Theory" by D.A. Sanchez, Dover, New York, 1968.
- > "Notes on Nonlinear Systems" by J.K. Aggarwal, Van Nostrand, 1972.

WEB RESOURCES:

- http://mathforum.org,
- http://ocw.mit.edu/oc
- www.web/Mathematics,
- www.physicsforum.com

Nature of Course	EMPLOYABILITY			✓	SKILL OR		ENTREPRENEURSHIP			
Curriculum Relevance	LOCAL		REG	IONAL		NATION	AL	\checkmark	GLOBAL	
Changes Made in the Course	e Percentage of Change			60	No Chan	ges Made			New Course	

* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COUR	SE OUTCO	OMES:							K	LEVEL	
After st	udying this	course, th	e students	s will be a	ble to:						
CO1	Explain var	ious types c	of kernels						K	1 to K5	
CO2	Determine a	Determine a wide range of differential and integral equations by Fourier transforms									
CO3	Solve linear Volterra integral equations using appropriate methods										
CO4	Solve Euler	equations a	and Abel's J	problem					K	1 to K5	
CO5	Solve linear	Fredholm	integral equ	ations using	g appropriat	e methods			K	1 to K5	
MAPPI	NG WITH	PROGR	AM OUT	COMES:							
CO/PO) PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	3	1	3	2	3	3					
CO2	2	1	3	1	3	3					

CO3	3	2	3	1	3	3		
CO4	1	2	3	2	3	3		
CO5	3	1	2	3	3	3		
S- STRC	ONG			M - M	EDIUM		L	- LOW
CO / PC) MAPP	ING:						
CO	S	PSO1	-	PSO2	PS	03	PSO4	PSO5
CO	1	3		2	1	L		
CO	2	3		2		L		
CO	3	3		2	1	L		
CO	4	3		2	1	L		
CO	5	3		2	1	L		
WEIGH	TAGE	15		10	Ę	5		
WEIGH PERCEN OF CO CONTRI N TO	NTAGE URSE BUTIO	3		2	1	L		

LESSON PLAN:

UNIT	INTEGRAL EQUATIONS	HRS	PEDAGOGY
I	Regularity conditions – Special kinds of Kernels – Eigen values and Eigen functions – Convolution Integral – The Inner or Scalar Product of Two Functions – Reduction to a System of Algebraic Equations – Fredholm Alternatives – An Approximate Method	18	PPT, Chalk & Talk, quiz
II	Integral transformation methods – introduction – Fourier transform – Laplace transform – application to Volterra integral equations with Convolution type kernels – examples.	18	Chalk & Talk, PPT
III	Relationship between linear differential equations and Volterra integral equations, resolvent kernel of Volterra integral equations, solution of integral equation by resolvent kernel, the method of successive approximations	18	Chalk & Talk
IV	Volterra integral equations with limits (x , $+\infty$), Volterra integral equations of the first kind, Euler integrals, Abel's problem, Abel's Integral equations and its generalisations.	18	Chalk & Talk, Assignment
v	Fredholm equations of the second kind, fundamentals, the method of Fredholm determinants, iterated kernals, constructing the resolvent kernel with the aid of iterated kernals	18	Chalk & Talk, PPT

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
Internal	Cos	K Level	Sectio MC(Section B Either or	Section C					
Internal Cos		K Level	No. of. Questions	K - Level	Choice	Either or Choice					
CI	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)					
AI	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)					
CI	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)					
AII	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)					
	1	No. of Questions to be asked	4		4	4					
Quest Patte		No. of Questions to be answered	4		2	2					
CIA I		Marks for each question	1		5	8					
		Total Marks for each section	4		10	16					

		D	istribution of	f Marks with	K Level	CIA I & CIA II	
	K Level	Section A (Multiple Choice Questions)	(Either / OrI otal I otal Markswithout choice)Choice)Choice)			Consolidate of %	
	K1	2			2	3.6	25
	K2	2	10		12	21.4	23
	K3		10	16	26	46.4	46.4
CIA	K4			16	16	28.6	28.6
Ι	K5						
	Marks	4	20	32	56	100	100
	K1	2			2	3.6	7.2
	K2	2			2	3.6	7.2
CIA	K3		10	16	26	46.4	46.4
II	K4		10	16	26	46.4	46.4
	K5						
	Marks	4	20	32	56	100	100

- K2- Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	lue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)	
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or	
S. No	S. No Cos K - L		No. of Questions	K – Level	Choice) With K - LEVEL	Choice) With K - LEVEL	
1	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)	
2	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)	
3	CO3 K1 – K5		2	K1,K2	2(K2,K2)	2(K3,K3)	
4	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)	
5	CO5	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)	
No. of Qu	lestions to	be Asked	10		10	10	
No. of	No. of Questions to be answered		10		10	5	
Marks	Marks for each question		1		1	8	
Total Ma	rks for ea	ich section	10		10	40	
	(Figu	ires in noren	thesis denotes	auestions show	uld be asked with the give	n K lovel)	

(Figures in parenthesis denotes, questions should be asked with the given K level)

	Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %					
K1	5			5	3.6	4					
K2	5	20		25	17.8	18					
K3		30	32	62	44.3	44					
K4			48	48	34.3	34					
Marks	10	50	80	140	100	100					
NR• Higher le	vel of perform	nce of the stu	idents is to be	assessed b	v attemntin	g higher level of K					

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Q. No.	Unit	СО	K-level		
Answer AL	L the question	ns	P	ART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answer	ALL the que	estions		PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
				OR	
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
	· · · ·			OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
				OR	
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
				OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
				OR	
15. b)	Unit - V	CO5	K3		

Answer A	ALL the quest	ions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K3		
				OR	
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
				OR	
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
				OR	
20. b)	Unit - V	CO5	K4		

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Project with Viva - Voce			
Course Code	24PMTPR41	L	Р	С
Category	Project	10	-	7
COURSE OBJE	CTIVES:			
To apply an	d adapt a variety of problem – solving strategies to solve problems			
To improve	thinking skills			
To promote	effective mathematical communication.			
To provide l	earning environment that simulates and enhances effective learning	, 1		
To develop	positive attitude towards mathematics			
Course Descrip	tion			
The Project is cond	ucted by the following Course Pattern.			
·				
Guidelines For Inte	rnsnip:			
	one Faculty guide.			
	hould submit a Project Report (Maximum 30 Pages).	Dement		
Voce.	r Project Report will be awarded only on the basis of the Project	Report	with vi	va -
Internal				
Internal				

External

Project Report Viva Voce	} 75
Total	- 100

Nature of Course	EMPLOYABILITY				SKILL ORIENTED			ENTRE		
Curriculum Relevance	LOCAL		REG	IONAL	✓	NATION	AL		GLOBAL	
Changes Made in the Course	Percentage	e of Ch	ange		No Cha	nges Made	1		New Course	

* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	SE OUTC	OMES:							K	LEVEL
After st	udying this	course, tl	ne student	s will be a	ble to:					
CO1	Apply the	skill of pre	esentation	and comm	unication te	echniques			K	1 to K5
CO2	Motive as	an individ	ual or in a	team in de	velopment	of projects			K	1 to K5
CO3	Analyze th	e available	e resources	s and to sel	ect most ap	opropriate	one		K	1 to K5
CO4	Make use	of the fund	lamentals o	of Mathem	atics to sea	rch the rela	ated literatu	ure survey	K	1 to K5
CO5	Evaluate th	Evaluate the real life problems by using Mathematics and its Application.								
MAPPI	NG WITH	PROGR	AM OUI	COMES	:					
CO/PC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	1	3				
CO2	1	2	2	1	2	1				
CO3	2	2	3	3	2	1				
CO4	3	2	3	2	1	2				
CO5	3 3 3		3	3	3					
	S- STRON	IG			M – MEI	DIUM			L - LO	W
CO / P	O MAPPI	NG:								
C	os	PSO1	L i	PSO2	PS	03	PSO4		PSO5	
C	D 1	3		2	1					
C	0 2	3		2	1	L				
C	D 3	3		2	1	L				
C	D 4	3		2	1	<u> </u>				
C	D 5	3		2	1	L				
WEIG	WEIGHTAGE 15			10	5	5				
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTIO N TO POS		3		2	1					

	Distribution of Marks with COs &K Level for Correction of CIA									
	COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS					
	CO1	K1 to K5	Preliminary Research Problem - Introduction	K1	4.0					
	CO2	K1 to K5	Literature Survey	K2	5.0					
CIA	CO3	K1 to K5	Understanding and Observation of the Data	K3	8.0					
CIA	CO4	K1 to K5	Results and Discussion	K4	4.0					
	CO5	K1 to K5	Interpretation of result and Conclusion	K5	4.0					
	Total Marks				25					

	Distribution of Marks with K Level CIA										
	K Level	Level experiment Marks without choice)									
	K1	Preliminary Research Problem - Introduction	4	16.0	-						
	K2	Literature Survey	5	20.0							
	K3	Understanding and Observation of the Data	8	32.0	36.0						
CIA	K4	Results and Discussion	4	16.0	68.0						
	K5	Interpretation of result and Conclusion	4	16.0	84.0						
	Marks		25	100	100						

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

K5 – Evaluating, interpreting and concluding the results with accurate measurements.

Distri	Distribution of Marks with COs &K Level for Correction of the Summative							
		Exam						
COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS				
CO1	K1 to K5	Preliminary Research Problem - Introduction	K1	10				
CO2	K1 to K5	Literature Survey and scope of the problem	K2	10				
CO3	K1 to K5	Understanding and Observation of the Data	K3	20				
CO4	K1 to K5	Results and Discussion	K4	15				
CO5	K1 to K5	Viva Voce	K5	20				
Total				75				
Marks				15				

Dis	Distribution of Marks with K Level								
K Level	Parameters for K-Level	Total Marks	% of (Marks without choice)	Consolidated %					
K1	Preliminary Research Problem - Introduction	10	13.33	13.3					
K2	Literature Survey	10	13.33	13.3					
K3	Understanding and Observation of the Data	20	26.67	26.7					
K4	Results and Discussion	15	20.0	20					
K5	Viva Voce	20	26.67	26.7					
Marks		75	100	100					

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Mathematics for SET/ NET & General Studies for UPSC/ TNPSC		
Course Code	24PMTEC41 L	Р	С
Category	Elective 4	-	3
COURSE OBJEC	TIVES:		
> The course pr	rovides various mathematical aptitude techniques of solving problems		
UNIT – I Algeb	ra		12
	ps-Quotients groups –Homomorphisms-Cyclic groups-Permutations-Co Determinant of matrices-Linear equations-Eigen values and Eigen vectors.	ombin	ations-
			12
UNIT – II Analy	rsis		14
Elementary set theo Differentiability-Un	rsis ory-Countable and Uncountable sets-Sequences and Series-Convergence-Co iform Convergence-Algebra of complex Numbers: Polynomials-Power Ser iemann Equations-Calculus of Residues-Singular points.		ty and
Elementary set theo Differentiability-Un functions-Cauchy R	bry-Countable and Uncountable sets-Sequences and Series-Convergence-Convergence-Algebra of complex Numbers: Polynomials-Power Set		ty and
Elementary set theo Differentiability-Un functions-Cauchy R UNIT - III Differ Existence and Uniqu linear ODE's-Lagra	ry-Countable and Uncountable sets-Sequences and Series-Convergence-Convergence-Convergence-Algebra of complex Numbers: Polynomials-Power Seriemann Equations-Calculus of Residues-Singular points.	ries-Ai geneou	ty and nalytic 12
Elementary set theo Differentiability-Un functions-Cauchy R UNIT - III Differ Existence and Uniqu linear ODE's-Lagra variables for Laplace	bry-Countable and Uncountable sets-Sequences and Series-Convergence-Convergence-Algebra of complex Numbers: Polynomials-Power Seriemann Equations-Calculus of Residues-Singular points. Cential Equations Juaness of solutions of IVP-General Theory of Homogeneous and non-homogonge and Charpit Methods for solving first order PDE's-Method of Separations	ries-Ai geneou	ty and nalytic 12
Differentiability-Un functions-Cauchy R UNIT - III Differ Existence and Uniqu linear ODE's-Lagra	bry-Countable and Uncountable sets-Sequences and Series-Convergence-Convergence-Algebra of complex Numbers: Polynomials-Power Seriemann Equations-Calculus of Residues-Singular points. Cential Equations ueness of solutions of IVP-General Theory of Homogeneous and non-homogonge and Charpit Methods for solving first order PDE's-Method of Separate, Heat and Wave Equations.	ries-Ai geneou	ty and nalytic 12 is
Elementary set theo Differentiability-Un functions-Cauchy R UNIT - III Differ Existence and Uniqu linear ODE's-Lagra variables for Laplace UNIT - IV	bry-Countable and Uncountable sets-Sequences and Series-Convergence-Convergence-Algebra of complex Numbers: Polynomials-Power Seriemann Equations-Calculus of Residues-Singular points. Cential Equations ueness of solutions of IVP-General Theory of Homogeneous and non-homogonge and Charpit Methods for solving first order PDE's-Method of Separate, Heat and Wave Equations.	ries-Ai geneou	ty and nalytic 12 is
Elementary set theo Differentiability-Un functions-Cauchy R UNIT - III Differ Existence and Uniqu linear ODE's-Lagra variables for Laplace UNIT – IV Percentage – profit a UNIT - V	bry-Countable and Uncountable sets-Sequences and Series-Convergence-Convergence-Algebra of complex Numbers: Polynomials-Power Seriemann Equations-Calculus of Residues-Singular points. Cential Equations ueness of solutions of IVP-General Theory of Homogeneous and non-homogonge and Charpit Methods for solving first order PDE's-Method of Separate, Heat and Wave Equations.	ries-Ai geneou	ty and nalytic 12 is of 12

BOOKS FOR STUDY:

> Material will be provided by the department

BOOKS FOR REFERENCES:

- > Upkar's CSIR-UGC NET/JRF/SET Mathematical Science by Dr. Alok Kumar.
- > Agarwal R.S, Publishers: S.Chand and Co "Quantitative Aptitude" 1990

WEB RESOURCES:

- https://www.classcentral.com/course/swayam-operations-research-14219
- https://developers.google.com/optimization/support/resources

Nature of Course	EMPLC	EMPLOYABILITY		1	SKILL ORIENTED			ENTREPRENEURSHIP		P
Curriculum Relevance	LOCAL		REGIONAL			NATION	AL	\checkmark	GLOBAL	
Changes Made in the Course	Percentage	Percentage of Change			No Chan	ges Made			New Course	~
* Treat	* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.							rse.		

COURS	SE OUTC	OMES:							K	LEVEL
After stu	udying this	course, th	ne student	s will be a	ble to:					
CO1	Understan	d the basic	concepts	of Algebra	and linear	Algebra.			K	1 to K5
CO2	Enhance th	neir ability	in Real an	d Complex	. Analysis				K	1 to K5
CO3	Utilize the knowledge to solve the problems in Differential Equations.									1 to K5
CO4	Apply for	competitiv	e examina	tions with	more confi	dence			K	1 to K5
CO5	Solve math	nematical p	oroblems v	vithin a lim	nited time f	rame.			K	1 to K5
MAPPI	NG WITH	PROGR	AM OUI	COMES				1		
CO/PC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	1	1	2	2				
CO2	1	2	3	2	3	1				
CO3	3	2	2	1	3	1				
CO4	1	2	2	3	2	2				
CO5	3	1	2	2	3	1				
S- STR	ONG			M – M	EDIUM			L - L(WC	
CO / P	O MAPPI	NG:								
C	os	PSO1		PSO2	PSO3		PSO4	ł	PSC)5
C	D 1	3		2	1	L				
C	D 2	3		2	1	L				
C	D 3	3		2	1	L				
C) 4	3		2	1	-				
C	D 5	3	2		1	L				
WEIG	HTAGE	E 15 10 5								
PERCE OF CO CONTE	WEIGHTED PERCENTAGE OF COURSE 3 CONTRIBUTIO N TO POS		2	1						

LESSO	LESSON PLAN:							
UNIT	Mathematics for SET/ NET & General Studies for UPSC/ TNPSC	HRS	PEDAGOGY					
I	Groups–Sub Groups-Quotients groups –Homomorphisms-Cyclic groups-Permutations-Combinations-Matrices-Rank and Determinant of matrices-Linear equations-Eigen values and Eigen vectors.	12	Chalk and Board, Virtual Class room, LCD projector					
II	Elementary set theory-Countable and Uncountable sets-Sequences and Series-Convergence-Continuity and Differentiability-Uniform Convergence-Algebra of complex Numbers: Polynomials-Power Series- Analytic functions-Cauchy Riemann Equations-Calculus of Residues- Singular points.	12	Guest Lectures.					
III	Existence and Uniqueness of solutions of IVP-General Theory of Homogeneous and non-homogeneous linear ODE's-Lagrange and Charpit Methods for solving first order PDE's-Method of Separation of variables for Laplace, Heat and Wave Equations.	12	Chalk & Talk					
IV	Percentage – profit and loss - proportion	12	Chalk & Talk					
V	Simple Interest and Compound interest, Time and Work	12	Chalk & Talk					

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)							
Internal Cos	K Level	Section MC(Section B Either or	Section C			
	03		No. of. Questions	K - Level	Choice	Either or Choice		
CI	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)		
AI	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)		
CI	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)		
AII	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)		
	1	No. of Questions to be asked	4		4	4		
Question Pattern CIA I & II		No. of Questions to be answered	4		2	2		
		Marks for each question	1		5	8		
		Total Marks for each section	4		10	16		

		D	istribution of	f Marks with	K Level	CIA I & CIA II		
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %	
	K1	2			2	3.6	25	
	K2	2	10		12	21.4	23	
	K3		10	16	26	46.4	46.4	
CIA	K4			16	16	28.6	28.6	
I	K5							
	Marks	4	20	32	56	100	100	
	K1	2			2	3.6	7.2	
	K2	2			2	3.6	7.2	
CIA	K3		10	16	26	46.4	46.4	
II	K4		10	16	26	46.4	46.4	
	K5							
	Marks	4	20	32	56	100	100	

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	lue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)		
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or		
S. No	Cos	K - Level	No. of	K – Level	Choice) With	Choice) With		
			Questions	II Lever	K - LEVEL	K - LEVEL		
1	CO1	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)		
2	CO2	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)		
3	CO3	K1 – K5	2	K1,K2	2(K2,K2)	2(K3,K3)		
4	CO4	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)		
5	CO5	K1 – K5	2	K1,K2	2(K3,K3)	2(K4,K4)		
No. of Qu	iestions to	be Asked	10		10	10		
No. of	No. of Questions to be answered				10	5		
Marks for each question		1		1	8			
Total Ma	Total Marks for each section		10		10	40		
	(Figures in parenthesis denotes, questions should be asked with the given K level)							

Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %		
K1	5			5	3.6	4		
K2	5	20		25	17.8	18		
К3		30	32	62	44.3	44		
K4			48	48	34.3	34		
Marks	10	50	80	140	100	100		

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	CO	K-level		
Answer AL	L the question	ns	P	ART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
I				c)	d)

Answer	ALL the que	estions		PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
	· · · ·			OR	
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
				OR	
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
	· · · ·			OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
				OR	
15. b)	Unit - V	CO5	K3		

Answer A	ALL the quest	ions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K3		
				OR	
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
				OR	
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
				OR	
20. b)	Unit - V	CO5	K4		

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Numerical Analysis Using Python							
Course Code	24PMTSP41	L	Р	С				
Category	Skill	-	4	2				
COURSE OBJEC	TIVES:							

To introduce the concepts and to develop working knowledge on the numerical methods for Mathematical concepts such as differentiation, integration etc to solve these problems using Python programming language

LIST OF PROGRAMMES

- 1. Find the polynomial for the given data using Newton's Forward Difference formula.
- 2. Find the polynomial for the given data using Newton's Backward Difference formula.
- 3. Find the polynomial for the given data using Central Difference formula.
- 4. Find the polynomial for the given data using Modified Newton's formula.
- 5. Solve a system of linear equations using Gauss Elimination method.
- 6. Solve a system of linear equations using Gauss- Jordan method.
- 7. Solve a system of linear equations using Gauss-Jacobi method.
- 8. Solve a system of linear equations using Gauss Seidal method.
- 9. Find a root of a quadratic equation using Newton-Raphson method.
- 10. Find a root of a cubic equation using Newton-Raphson method.
- 11. Compute the value of f(x) using Trapezoidal rule.
- 12. Compute the value of f(x) using Simpson's rule.

Total Lecture Hours

BOOKS FOR REFERENCES:

- P.R. Turner, T. Arildsen, K. Kavanagh, Applied Scientific Computing With Python, Springer International Publishing AG, part of Springer Nature, 2018
- > J. M. STEWART, Python for Scientists, Cambridge University Press, 2014
- 2. C. Hill, Learning Scientific Programming with Python, Second Edition, Cambridge University Press, 2020, 2004.

WEB RESOURCES:

https://www.w3schools.com/python/python_math.asp

30

Nature of Course	EMPLOYABILITY			SKILL ORIENTED			\checkmark	ENTRE			
Curriculum Relevance	LOCAL		REG	IONAL		NATION	AL		GLOBAL		
Changes Made in the Course	Percentag	e of Ch	ange		No Chan	iges Made			~		

* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	SE OUTCO	OMES:							K	LEVEL		
After st	udying this	course, th	ne student	s will be a	ble to:							
CO1	Learn four	dations of	Python an	d numerica	al calculus	of Python.	•		K	1 to K5		
CO2	Study the of solve this l	inear equa	tions				-		n	1 to K5		
CO3	Obtain the Python pro			1	0	t iterative	methods a	nd write the	e K	1 to K5		
CO4	Write the I	Python pro	grams to f	ind the inte	rpolation				K	K1 to K5		
CO5	Write the I	Write the Python programs to solve quadratic and cubic equatiions										
MAPPI	NG WITH	PROGR	AM OUI	COMES:								
CO/PC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO 1	3	2	3	2	3	3						
CO2	3	2	3	2	3	3						
CO3	3	2	3	2	3	3						
CO4	3	2	3	2	3	3						
CO 5	3	3	3	2	3	3						
S- STR	ONG			M – M	EDIUM			L - L(W C			
CO / P	O MAPPI	NG:										
С	os	PSO1		PSO2	PS	03	PSO ₂	1	PSC)5		
C	01	3		2	2	;						
C	0 2	3		2	2	;						
C	03	3		2	2	;						
C	04	3		2	2	;						
C	05	3		2	2	2						
WEIG	HTAGE	15		10	1	0						
PERCE OF CONTR	HTED ENTAGE OURSE EIBUTIO O POS	3		2	2	2						

LESSON PLAN:

LIST OF PROGRAMMES	HRS	PEDAGOGY
1. Find the polynomial for the given data using Newton's Forward Difference		
formula.		
2. Find the polynomial for the given data using Newton's Backward Difference		
formula.		
3. Find the polynomial for the given data using Central Difference formula.		
4. Find the polynomial for the given data using Modified Newton's formula.		
5. Solve a system of linear equations using Gauss Elimination method.		
6. Solve a system of linear equations using Gauss- Jordan method.	30	
7. Solve a system of linear equations using Gauss-Jacobi method.		
8. Solve a system of linear equations using Gauss Seidal method.		
9. Find a root of a quadratic equation using Newton-Raphson method.		
10. Find a root of a cubic equation using Newton-Raphson method.		
11. Compute the value of $f(x)$ using Trapezoidal rule.		
12. Compute the value of $f(x)$ using Simpson's rule.		

	l	Learning Outcom Formativ Articulation Mapping	ve Examinat	ion - Blue l	Print	·	
Internal	Cos	K Level	Syntax & Semantic s es		Concept Applications	Codin g & Imple mentat ion	Debug ging & Outpu
	CO1	K1	5				
~~ .	CO2	K2		5			
CIA	CO3	K3			5		
	CO4	K4				5	
	CO5	K4					5
	<u>л</u>	No. of Questions to be asked	2	2	2	2	2
Quest		No. of Questions to be answered	2	2	2	2	2
Pattern CIA		Marks for each question	2.5	2.5	2.5	2.5	2.5
		Total Marks for each section	5	5	5	5	5

			Distribution	of Marks wi	th K Lev	el CIA			
	K Level	Syntax & Semantics	Program ming principles	Concept Applicatio ns	Codin g	Debuggi ng & Output	Total Marks	% of (Mar ks witho ut choic e)	Co nso lid ate d %
	K1	5					5	20	20
	K2		5				5	20	20
	K3			5			5	20	20
CIA	K4				5	5	10	40	40
	Marks						25	100	100

K2- Basic understanding of facts and stating main ideas with general answers

- **K3** Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ve Exam	ination – B	lue Print Artic	ulation Map	ping – K Level with C	ourse Outco	mes (COs)			
S. No	Cos	K - Level	Syntax & Semantics	Program ming principles	Concept Applications	Coding& Impleme ntation	Debuggin g & Output			
1	CO1	K1	15							
2	CO2	K2		15						
3	CO3	K3			15					
4	CO4	K4				15				
5	CO5	K4					15			
No. of Qu	estions to	o be Asked	2	2	2	2	2			
	No. of Questions to be answered					2	2	2	2	2
Marks	Marks for each question			7.5	7.5	7.5	7.5			
Total Ma	rks for ea	ach section	15	15	15	15	15			

(Figures in parenthesis denotes, questions should be asked with the given K level)

			Distribution	of Marks wi	th K Lev	el CIA			
	K Level	Syntax & Semantics	Program ming principles	Concept Applicatio ns	Codin g	Debuggi ng & Output	Total Marks	% of (Mar ks witho ut choic e)	Co nso lid ate d %
	K1	15					15	20	20
	K2		15				15	20	20
	K3			15			15	20	20
CIA	K4				15	15	30	40	40
	Marks						75	100	100

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2024-2025 AND AFTER

Course Name	Extension Activities			
Course Code	24PEXTG41	L	Р	С
Category	Extension	-	-	1
Course Descript	ion			

Course Description

The students have to attend a 30 hours of Extension activities of their own choice to be carried out in the sixth semester.

Course Description for Extension activities:

- 1. The Project is conducted by the following Course Pattern. The Extension activities should be minimum 30 hours.
- 2. Each group should produce permission letter as well as the attendance certificate.
- 3. There will be one Faculty guide.
- 4. The students should submit an Extension activities Report (Maximum 30 Pages).
- 5. The Marks for Extension activities will be awarded only on the basis of the Extension activities Report.
- 6. Prior permission may be obtained in advance by the students concerned and information shall be passed onto the colleges thus enabling the training supervision by the concerned faculties authorized by the college.
- 7. Daily postal or electronic reporting should be obtained to ensure coherent and comprehensive activities during the semester.
- 8. A final report containing the activities report shall be given not exceeding 30 [A4] pages [in a spiral-bound form/pre-printed record designed for this purpose]

Areas Covered:

- > Aari work
- Doopstick making
- > Art from Waste
- Sambrani making
- Candle making
- Mushroom cultivation
- Silkworm cultivation
- Cucumber cultivation

Submission	25
External	}
Project Repo	ort
Viva Voce	75
Total	

Nature of Course	EMPLC)YABII	LITY	~	S	SKILL ORIENTED			ENTRE	>		
Curriculum Relevance	LOCAL		REG	IONAL		✓	NATION	AL		GLOBAL		
Changes Made in the Course	Percentage	e of Ch	ange			No Chan	iges Made			New Course		
* Tre	at 20% as e	each un	it (20*5	=100%)	and	d calculat	the percent	age o	f change	for the course.		

COURS	SE OUTCO	OMES:								K LEVEL
After stu	udying this	course, th	ne student	s will be a	ble to:					
CO1	Explain the student to the environment and expectations of performance on the part of society.									K1 to K4
CO2	Able to develop work habits and attitudes necessary for job success. Build a record of work experience.									K1 to K4
CO3	Explore the real world in the original situation.								K1 to K4	
CO4	Expose the student to professional role models by developing communication, interpersonal and other critical skills.								K1 to K4	
CO5	Examine society-valued skills such as teamwork, communications and attention to detail.									
MAPPI	NG WITH	PROGR	AM OUT	COMES:					1	
CO/PC	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO	9 PO10
CO1	2	3	3	3	1	3				
CO2	1	2	2	1	2	1				
CO3	2	2	3	3	2	1				
CO4	3	2	3	2	1	2				
CO5	3	3	3	3	3	3				
	3- STROI	NG			2 – MED	IUM			1 - L	ow

CO / PO MAPPING:												
COS	PSO1	PSO2	PSO3	PSO4	PSO5							
CO 1	3	2	1									
CO 2	3	2	1									
CO 3	3	2	1									
CO 4	3	2	1									
CO 5	3	2	1									
WEIGHTAGE	15	10	5									
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTIO N TO POS	3	2	1									