

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

Pasumalai, Madurai – 625 004 Tamil Nadu.

CURRICULUM RELEVANCE TO THE LOCAL, REGIONAL, NATIONAL AND GLOBAL NEEDS

NAME OF THE PROGRAMME:M.Sc MATHEMATICS PROGRAMME CODE: PMT

PROGRAMME OUTCOMES

PO1: Enhance the entrepreneurial abilities, life skills and research initiates through experiential learning practices and building self confidence

PO2: Collaborate with industry and alumnae to explore the new avenues in respective domains and raise the employability ratio

PO3: Equip with soft skills and critical thinking to produce an erudite and trustworthy generation to fit into versatile situations

PO4: Adhere to the ethical and environmental sustainability to create morally upright and empowered citizens to face industry/ Institution

PO5: Up-skill / Re-skill their primary knowledge and potentials to compete in the dynamic global environment.

PO6: To build confidence to appear for Competitive / Civil Service examinations and to conquer commanding positions in organizational level.

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

Pasumalai, Madurai – 625 004 Tamil Nadu.

PROGRAMME SPECIFIC OUTCOMES

PSO1: Demonstrate the understanding of mathematical concepts in the field of Science and Technology.

PSO2: Express their mathematical knowledge with others effectively in both oral and written form in an organized manner.

PSO3: Proficient in using digital learning platforms and update their knowledge, skills to fulfill the requirements at the workplace in their life span.

PSO4: Employ critical and analytical thinking in understanding the concepts of Mathematical Science and in appearing Competitive examinations SET/ NET/ TET.

PSO5: Choose appropriate mathematical and computational methods in order to solve different types of problems and work efficiently as a team member / leader..

PSO6: Work independently and do detailed study of various concepts of Science. Plan, execute, report the results of an experiment/investigation with the highest standard of ethics in research.

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

S1. No	Course Code	Course Name	Course Outcomes
1.	21PMTC11	Algebra	 CO1: Demonstrate the understanding of group, normal groups, quotient group and permutation groups. CO2: Use Sylow's theorem in algebraic structures CO3: Examine ideals, quotient rings and integral domain CO4: Analyse Euclidean ring\$ CO5: Classify the irreducibility of polynomials, rings over field
2.	21PMTC12	Analysis	 CO1: Knowledge about limit, continuity, connectedness and its properties CO2: Identify the derivative of real valued functions with continuous concept and consequences CO3: Illustrate the derivatives of higher order, differentiation and integration CO4: Apply the fundamental theorem of sequence and series CO5: Importance of uniform convergence and Stone – Weierstrass theorem
3.	21PMTC13	Ordinary Differential Equations	CO1: Analyze the existence and uniqueness of solutions of ordinary differential equations CO2: Solve homogenous equation and non- homogenous equation with

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

			 constant co-efficient CO3: Develop the concepts of ordinary differential equation for homogeneous and non-homogenous equations. CO4: Demonstrate the understanding of power series and special functions CO5: Compute the solution by iterative procedure for exact equation.
4.	21PMTC14	Graph Theory and its Algorithms	CO1: The Incidence and Adjacency Matrices, Sub graphs, Vertex degrees, Paths and Connection, Cycles, Sperner's lemma, Trees, Cut edges and Bonds, Cut vertices CO2: Euler tours, Hamiltonian cycles, The travelling salesman problem, Matchings, Matchings and Coverings in Bipartite graphs CO3: Edge Chromatic Number, Vizing's Theorem, Chromatic number, Brook's theorem CO4: Plane and Planar graphs, Dual Graphs ,Euler's formula ,Bridges , Kuratowski's Theorem, Directed Graphs, Directed Paths, Directed Cycles, Flows, Cuts, The Max-Flow Min -Cut theorem CO5: Algorithms : connectedness and components – spanning tree – cut vertices and separability – directed circuits – shortest path algorithm – planarity testing

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

			– isomorphism
5.	21PMTC15	Classical Mechanics	 CO1: Demonstrate the understanding of the fundamental concepts in dynamics of system of particle. CO2: Derive D'Alembert 's principle, Lagrange's equations and Hamilton's principle CO3: Represent the complicated mechanical systems using the Lagrangian and Hamiltonian principle. CO4: Explain the concepts of one –dimensional problem and Classification of orbits. CO5: Derive Bertrand's theorem, The Kepler problem, the Laplace – Runge- Lenz vector.
6.	21PMTC21	Advanced Algebra	CO1: Explain the properties of Inner Product Spaces. CO2: Use linear transformation for characteristic roots and vectors CO3: Represent Canonical forms, Triangular form, Nilpotent transformations CO4: Determine the Trace and transpose,

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

			determinants CO5: Evaluate the normal transformation
7.	21PMTC22	Partial Differential Equations	 CO1: Solve the Linear first order partial differential equations using various methods CO2: Analyze the Semi- linear, Quasi-linear & Non- linear first order partial differential equations. CO3: Classify the second order partial differential equations CO4: Apply the concepts of partial differential equations in solving boundary value problems. CO5: Determine the solutions for homogeneous and non-homogeneous partial differential equations.
8.	21PMTC23	Numerical Analysis	C01: Demonstrate the understanding of direct methods and iterative methods for equations C02: Apply proper methods for solving transcendental, algebraic and system of equations C03: Evaluate interpolation and extrapolation using tabular values C04: Associate tabular values with integration and differentiation C05: Use iterative methods for PDE

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

9.	21PMTC24	Fuzzy Algebra and its Applications	 CO1: Interpret fuzzy set theory, representation, operation and extension principle CO2: Identify fuzzy numbers and its linguistic variables CO3: Validate fuzzy relation, projections and its equivalence. CO4: Analyse multi valued logic and fuzzy logic with inference theory CO5: Apply fuzziness in real valued problems
10.	21PMTN21	Mathematics for Competitive Examinations	 CO1: Understand the concepts of Mathematics along with analytical ability CO2: Develop the mathematical problem solving skill CO3: Evaluate the problems on data interpretation CO4: Identify the time related problems and solving CO5: Illustrate appropriate methods for solving Permutation and Combination
11.	21PMTC31	Field Theory And Lattices	 CO1: Explain the notion of field theory. CO2: Analyze the relationship between the ring, field and Galois theory. CO3: Develop the proof of solvable group for radicals. CO4: Explain the finite division rings

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

			CO5: Classify the different types of lattices
12.	21PMTC32	Complex Analysis	 CO1: Explain the concepts of complex function and power series CO2: Analyze the properties of Analytical Function CO3: Analyze the Cauchy's theorem for different closed curves CO4: Construct arguments effectively in proof of theorems in complex analysis CO5: Develop the series of complex function using Jensen's and Poisson formula
13.	21PMTC33	Topology	 CO1: Compare basis and sub basis in topological spaces. CO2: Apply metric space in a topological space CO3: Analyze metrization and compactness of spaces CO4: Explain the countability axioms and separation axioms and separability CO5: Develop the logical arguments related to continuous functions on topological spaces.
14.	21PMTE31	Operations Research	 CO1: Identify various decision- making tools. CO2: Analyze various modelsin inventory problems. CO3: Apply suitable method

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

			in game theory.
			CO4: Explain Poisson Oueuing Models
			CO5: Classify the constrained and unconstrained Problems
15.	21PMTE32	Nonlinear Differe ntial Equations	 CO1: Understand the dynamics of basic population models CO2: Find approximate solutions of nonlinear equations using averaging and perturbation methods CO3: Master the concepts of stability in different perspectives CO4: Have an idea on qualitative properties of solutions of linear and nonlinear systems CO5: Improve their problem solving capabilities
16.	21PMTE33	Statistics	 CO1: Select the concepts of Probability theory and Mathematical Statistics. CO2: Apply properties of Random variables Moments, Characteristic function, Binomial distribution, Poisson distribution, Normal distribution, and Stochastic Convergence. CO3: Solve today's complex world problems by applying the concepts obtained in the course CO4: Analyse mean, variance, moments for various distributions using Characteristic function, Probability Generating function, One point

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

			distribution and Two point distribution CO5: Derive various distributions and prove the theorems on Stochastic Convergence.
17.	21PMTE34	Integral Equations	 CO1: Explain the kinds of kernels CO2: Solve linear Volterra and Fredholm integral equations using appropriate methods CO3: Formulate complex problems of ordinary and partial differential equations with techniques of Integral transform CO4: Apply integrals equation in transforms CO5: Determine a wide range of differential and integral equations by Fourier transforms
18.	21PMTE35	Cryptography	 CO1: Demonstrate the understanding the fundamentals of cryptography CO2: Demonstrate standard cryptographic Algorithms used to analyze confidentiality, integrity and authenticity. CO3: List the security issues in the network, key distribution and management schemes CO4: Explain in detail about Data encryption standard (DES) Structure CO5: Analyze the Advanced Encryption standard(AES)

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

19.	21PMTE36	Mathematical Modelling	 CO1: Use differential equations in solving mathematical models. CO2: Analyze the Occurrence, classification and characteristics of Mathematical Models. CO3: Apply problem solving techniques in Mathematical Modeling to bring solutions to various real life situations. CO4: Examine the principles governing the motion of satellites through notions of Mathematical Modeling and interpret the techniques in Mathematical Models to analyse the motion of fluids. CO5: Explain suitable models for population dynamics, medicine and reducing various forms of Pollution
20.	21PMTC41	Measure Theory And Integration	 CO1: Explain the concepts of Lebesgue integral. CO2: Analyze the geometrical meaning of measurable functions and integrations. CO3: Apply the techniques of measure theory to evaluate integrals CO4: Compare Riemann with other integrals. CO5: Identify four derivatives and Lebesgue differentiation theorem.

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

21.	21PMTC42	Functional Analysis	 CO1: Explain the concepts of Normed Spaces, Banach Spaces, Compactness and Dimensions CO2: List the operators and its properties. CO3: Analyze the Orthogonal complements, ortho-normal sets and sequences CO4: Make use of the bounded linear functional, various operators and Hahn-Banach Theorem CO5: Analyze Uniform boundedness, open mapping, closed graph theorem, Strong and weak convergence
22.	21PMTPR 1	Project	 CO1: Apply the skill of presentation and communication techniques CO2: Motive as an individual or in a team in development of projects. CO3: Analyze the available resources and to select most appropriate one CO4: Make use of the fundamentals of Mathematics to search the related literature survey CO5:Evaluate the real life problems by using Mathematics and its Application.

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

23.	21PMTE41	Number Theory	 CO1: Explain the numbering concepts. CO2: Apply the concepts of prime numbers and principles to solve problems CO3: Solve the system of linear congruencies with different module using the Chinese Reminder Theorem. CO4: Categorize the various arithmetic functions.
			 CO5: Examine the quadratic residues and quadratic nonresidues using congruences. CO1: Understand the rules of Sum and Product of Permutations and Combinations. CO2: Discuss distributions of Distinct Objects into Nondistinct Cells and Partitions of Integers
24.	21PMTE42	Combinatorial Mathematics	 CO3: Identify Solutions by the technique of Generating Functions and Recurrence Relations with Two Indices. CO4: Make use of the concepts of Permutations with Restrictions on Relative Positions and the Rook Polynomials. CO5: Analyze equivanlence classes of functions in Polya's Theory

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

25.	21PMTE43	Differential Geometry	 CO1: Demonstrate the Understanding the concept of space curves. CO2: Identify metric on a surface, direction coefficients on a surface and nature of points on the surface. CO3: Analyze Geodesic and their differential equations CO4: List topological aspects of surfaces. CO5: Analyse the Weingarton Equations, Gaussian equations, Mainardi-Codazzi equations
26.	21PMTE44	Stochastic Process	 C01: Classify simple stochastic process models in the time domain. C02: Apply the generalization of Poisson process C03: Compare Markov and Erlang process C04: Identify the qualitative and quantitative analysis of Stochastic process model. C05: Explain models for real life problems.
27.	21PMTE45	Fluid Dynamics	 CO1: Find the gradient , divergence , curl of orthogonal coordinates CO2: Identify the Euler"s equations of motion and equations of continuity CO3: Solve the equations of motion of a fluid when it is at rest and in motion CO4: Analyze two dimensional and three dimensional flows

A Co-educational, Autonomous and Linguistic Minority Institution Affiliated to Madurai Kamaraj University Re-accredited with "A" Grade by NAAC

			CO5: Examine Two- Dimensional flow using cylindrical Polar coordinates
28.	21PMTE46	Multivariable Calculus	 CO1: Apply derivatives of functions of two or more variables CO2: Solve the gradient and directional derivatives for a function at a given point. CO3: Find the total differential of a function of several variables CO4: Solve a function of two or more variables, organizing work into main steps carefully justifying determination of critical points. CO5: Analyse multiple integrals either by using iterated integrals or approximation methods.